top of page

All History

Total Entries: 1045

Select one of the above filters

Year Filter:
Backwards
Recently Added
Clear Year
Search

Jul 11, 1882

Open Entry:

Scurvy - To the Editor of the Lancet

7/11/82

John C Lucas writes from India on his observations that meat can cure scurvy - "In the case of the semi-savage hill tribes of Afghanistan and Baluchistan, their food contains large amounts of meat (mutton), and is altogether devoid of vegetables."

p331, John Lucas: "Sir, —A propos the annotation appearing under the above heading in The Lancet of June 24th, pp. 1048-9, I would beg permission to observe that almost every medical man in India will be able to endorse the views of Dr. Moore, to which you refer. Medical officers of native regiments notice almost daily in their hospital practice that—to use your writer's words—"insufficient diet will cause scurvy even if fresh vegetable material forms a part of the diet, though more rapidly if it is withheld." Indeed, so far as my humble experience as a regimental surgeon from observations on the same men goes, I am inclined to think that the meat-eating classes of our Sepoys—to wit, the Mahomedans, especially those from the Punjaub—are comparatively seldom seen with the scorbutic taint ; while, on the contrary, the subjects are, in the main, vegetable feeders who are their non-meat-eating comrades, the Hindus (Parboos from the North- West Provinces and Deccan Mahrattas), especially those whose daily food is barely sufficient either in quality or quantity. A sceptic may refuse to accept this view on the ostensible reason that though the food of the meat-eating classes be such, it may, perchance, contain vegetable ingredients as well as meat. To this I would submit the rejoinder that as a matter of fact, quite apart from all theory and hypothesis, the food of these meat-eating classes does not always contain much, or any, vegetables. In the case of the semi-savage hill tribes of Afghanistan and Baluchistan, their food contains large amounts of meat (mutton), and is altogether devoid of vegetables. The singular immunity from scurvy of these races has struck me as a remarkable physiological circumstance, which should make us pause before accepting the vegetable doctrine in relation to scurvy et hoc genus omne."


http://www.empiri.ca/2017/02/#id2

Aug 28, 1882

Open Entry:

Scurvy

8/28/82

Dr Charles Henry Ralfe discovers that a diet of only meat devoid of vegetables still prevents scurvy.

"Sir, I was struck by two independent observations which occurred in your columns last week in regard to the etiology of scurvy, both tending to controvert the generally received opinion that the exclusive cause of the disease is the.........

prolonged and complete withdrawal of succelent vegetatables from the dietary of those affected. 

Thus Mr. Neale, of the Eira Arctic Expedition, says: "I do not think that spirit or limejuiceis of much use as an antiscorbutic ; for if you live on the flesh of the country, even, I believe, without vegetables, you will run very little risk of scurvy."


Dr. Lucas writes: "In the case of the semi- savage hill tribes of Afghanistan and Beluchistan their food contains a large amount of meat, and is altogether devoid of vegetables. The singular immunity from scurvy of these races has struck me as a remarkable physiological circumstance, which should make us pause before accepting the vegetable doctrine in relation to scurvy." These observations do not stand alone. Arctic voyagers have long pointed out the antiscorbutic properties of fresh meat, and Baron Larrey, with regard to hot climates, arrived at the same conclusion in the Egyptian expedition under Bonaparte, at the end of last century."


President's Address: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC2036671/pdf/medcht00012-0097.pdf


"Dr. Charles Henry Ralfe, the son of a naval officer, was born in 1842. He received his medical education at the Bath United Hospital and King's College, London. After having been House Surgeon at the Lock, he entered at Caius College, Cambridge, and graduated with honours in Natural Science. He first came before the public as a general practitioner at Doncaster, but in 1869 he established himself as a physician in London. He soon obtained the appointment of Registrar at Charing Cross, and availed himself of the opportunities there afforded to work at Physiological Chemistry. His labours bore fruit in 1873 in the shape of a small but useful handbook on that subject. Shortly after this he became attached to St. George's Hospital as Demonstratorof Physiological Chemistry, and to the Seamen's Hospital at Greenwich as Physician. He used his special knowledge and his clinical opportunities in the investigation of scurvy, a disease which cannot be said, as yet, to have given up its secret, but which Dr. Ralfe threw light upon in pointing out the deficiency in it, not only of potash, but of the alkaline phosphates. He left St. George's and Greenwich on becoming in 1880 Assistant Physician to the London Hospital, which he continued to be until within a few months of his death. Dr. Ralfe died of phthisis, sequent on diabetes, on the 26th of last June, at the age of fifty-four. He was a type of the best kind of physician. He used his opportunities for advancing knowledge with ability and success, and without the purpose of an advertiser. He was cultivated and well-read, upright and honorable, kindly and personally attractive. His loss will be regretted by all who knew him.

9/23/82

So with the Eira, we believe that had they not fortunately been able to obtain abundant supplies of fresh meat, scurvy would have appeared, and that the preserved vegetables in the absence of lime-juice would have proved insufficient as antiscorbutics.

p495 - https://www.google.com/books/edition/The_Lancet/MJFPAAAAYAAJ?hl=en&gbpv=1


SCURVY. 


Dr. Buzzard, in a letter which appeared in our columns last week, considers the fact that the crew of the Eira were supplied with preserved vegetables tells against the supposition advanced by Mr. Neale, that if Arctic voyagers were to feed only on the flesh of the animals supplied by the country they would be able to dispense with lime-juice. The truth is, it is an open question with many as to the relative antiscorbutic properties of preserved vegetables, and whether under the circumstances in which the Eira's crew were placed they would have been sufficient, in the absence of lime-juice and fresh meat, to have preserved the crew from scurvy. 


A case in point is the outbreak that occurred on board the Adventure, in the surveying voyages of that vessel and the Beagle. The Adventure had been anchored in Port Famine for several months, and although "pickles, cranberries, large quantities of wild celery, preserved meats and soups, had been abundantly supplied," still great difficulty had been experienced in obtaining fresh meat, and they were dependent on an intermittent supply from wild-fowl and a few shell-fish. Scurvy appeared early in July, fourteen cases, including the assistant-surgeon, being down with it. At the end of July fresh meat was obtained; at first it seemed to prove ineffectual, but an ample supply being continued, the commander was able to report, by the end of August, "the timely supply of guanaco meat had certainly checked the scurvy." This is an instance in which articles of diet having recognised antiscorbutic properties proved insufficient, in the absence of lime-juice and fresh meat, and under conditions of exceptional hardship, exposure, and depressing influence, to prevent the occurrence of scurvy. So with the Eira, we believe that had they not fortunately been able to obtain abundant supplies of fresh meat, scurvy would have appeared, and that the preserved vegetables in the absence of lime-juice would have proved insufficient as antiscorbutics. 


This antiscorbutic virtue of fresh meat has long been recognised by Arctic explorers, and, strangely, their experience in this respect is quite at variance with ours in Europe. It has been sought to explain the immunity from the disease of the Esquimaux, who live almost exclusively on seal and walrus flesh during the winter months, by maintaining that the protection is derived from the herbage extracted from the stomach of reindeer they may kill. In view, however, of the small proportion of vegetable matter that would be thus obtained for each member of the tribe, and the intermittent nature of the supply, it can hardly be maintained that the antiscorbutic supplied in this way is sufficient unless there are other conditions tending in the same direction. And of these, one, as we have already stated, consists probably in the fact that the flesh is eaten without lactic acid decomposition having taken place, owing either to its being devoured immediately, or from its becoming frozen. The converse being the case in Europe, where meat is hung some time after rigor mortis has passed off, and lactic acid develops to a considerable extent. This seems a rational explanation, and it reconciles the discrepancy of opinion that exists between European and Arctic observers with regard to meat as an antiscorbutic. In bringing forward the claims of the flesh of recently killed animals as an antiscorbutic, it must be understood that we fully uphold the doctrine that the exclusive cause of scurvy is due to the insufficient supply of fresh vegetable food, and that it can be only completely cured by their administration ; but if the claims advanced with regard to the antiscorbutic qualities of recently slaughtered flesh be proved, then we have ascertained a fact which ought to be of the greatest practical value with regard to the conduct of exploring expeditions, and every effort should be made to obtain it. Everything, moreover, conducive to the improvement of the sailor's dietary ought to receive serious consideration, and it has therefore seemed to us that the remarks of Mr. Neale and Dr. Lucas are especially worthy of attention, whilst we think the suggestion of the former gentleman with regard to the use of the blood of slaughtered animals likely to prove of special value."


http://www.empiri.ca/2017/02/#id2 - Found and typed up by Amber O'Hearn

Sep 30, 1882

Open Entry:

To the Editor of the Lancet

9/30/82

Dr Lucas discusses theories on why an all-meat diet is able to cure scurvy, guessing that the value is in fresh or immediately frozen meat.

p913 "Sir, —In a foot-note to page 49G of his " Manual of Practical Hygiene,", fifth edition, (London, Churchill, 1878), Parkes says : —"For a good deal of evidence up to 1848, I beg to refer to a review I contributed on scurvy in the British and Foreign. Medico-Chirurgical Review in that year. The evidence since this period has added, I believe, little to our knowledge, except to show that the preservation and curative powers of fresh meat in large quantities, and especially raw meat (Kane's Arctic Expedition), will not only prevent, but will cure scurvy. Kane found the raw meat of the walrus a certain cure. For the most recent evidence and much valuable information, see the Report of the Admiralty Committee on the Scurvy which occurred in the Arctic Expedition of 1875-76 (Blue Hook, 1877)." 


I think that the last sentence in the above is not Parkes' own, but that it must have been added by the editor in order to bring it up to the date of the issue of the current edition. The experience since then of the Arctic Expedition in the Eira coincides with these. I refer to that portion of the report where the author tells us that "our food consisted chiefly of bear and walrus meat, mixing some of the bear's blood with the soup when possible." And again: "I do not think that, spirits or lime-juice is much use as an antiscorbutic, for if you live on the flesh of the country, even, I believe, without vegetables, you will run very little risk of scurvy. There was not a sign of scurvy amongst us, not even an anaemic face," (Lancet, Aug. 26th.) 


So that, as far as this question of fresh meat and raw meat and their prophylactic and curative properties are concerned, ample evidence will be found in other published literature to corroborate that of the Eira. But when you take up the question of the particular change which takes place in meat from its fresh to its stale condition, you will find a great deal of diversity and little harmony at opinion. Without taking up other authors on the subject, we stick to Parkes and compare his with Dr Ralfe's views on this point. Parkes thought "fresh, and especially raw meat, is also useful, and this is conjectured to be from its amount of lactic acid; but this is uncertain,"1 while on the other hand Dr. Ralfe repeats, as a probable explanation, too, of the reason of fresh meat being an anti-scorbutic, but that it is due to the absence of lactic acid. For, from well-known chemical facts he deduces the following: — "In hot climates meat has to be eaten so freshly killed that no lime is allowed for the development of the lactic acid : in arctic regions the freezing arrests its formation. The muscle plasma, therefore, remains alkaline. In Europe the meat is invariably hung, lactic acid is developed freely, and the muscle plasma is consequently acid. If, therefore, scurvy is, as I have endeavoured to show ("Inquiry into the General Pathology of Scurvy"), due to diminished alkalinity of the blood, it can be easily understood that meat may be antiscorbutic when fresh killed, or frozen immediately after killing, but scorbutic when these alkaline salts have been converted into acid ones by lactic acid decomposition. The view of the alkalinity of the blood coincides with Dr. Garrod's theory, which, however, appears to have as a sine qua turn the absence of a particular salt- namely, potash. I am inclined to think that, taking into account the nervous symptoms which are not infrequently associated with a certain proportion of scorbutic cases, resulting probably from the changes taking place in the blood, not unlike those which occur in gout and rheumatism, there must be some material change produced in the sympathetic system. In many of the individuals tainted with scurvy there were slight and severe attacks of passing jaundice in the cases which occurred in Afghanistan. Can we possibly trace this icteric condition to this cause? This is but a conjecture so far. But there certainly is in Garrod's observations an important point which, if applicable to all countries, climates, and conditions of life, is sufficiently weighty to indicate the necessity for farther research in that direction, and that point is this : the scorbutic condition disappeared on the patient being given a few grains of potash, though kept strictly on precisely the same diet which produced scurvy. 


—I am, Sir, yours truly, Ahmedabad, India, 30th Sept., 1882. 


JOHN C. LUCAS."


http://www.empiri.ca/2017/02/#id2

Jan 1, 1883

Open Entry:

A book of medical discourses: in two parts

1/1/83

The first female African American doctor, Rebecca Crumpler, wrote this book in 1883 and describes how a broiled lamb chop or beef should be added to an infant's diet while weaning. The full book is easy to read and is again a fascinating mix of religion and observation, typical of the time period.

Now since we have noticed to some extent how sudden emotions, as of grief, anger or fright may shock the child at the breast through the agency of those little organs called nerves,— we will pass on to notice some of the causes of bowel com plaints arising from the nature of the food eaten by the nurse. Probably there is no cause more frequently productive of infantile bowel com plaints, both during and after the month, than that of the too early indulgence in a mixed diet. 


It may be well to enumerate some of the more objectionable articles of diet from the first day of confinement to the seventh or ninth month, or time for weaning. 


Of the vegetables, — beans, dry or green, cabbage, cooked or raw, beets, turnips, cucumbers, green peas, dandelions, spinach and Carolina potatoes. Pickles of all kinds. 

All of the finny tribe ; oysters and lobsters being the most dangerous. Of the meats, fresh pork and veal. 

Of the desserts, egg custards, pastry, cheese and preserved fruits. 

Of the fluids — coffee — unless ordered for medicinal purposes — raw milk, wines, ales or beers. 


As a matter of convenience I will introduce what in reason should constitute the proper diet for the same period of time ; the modes of preparation being left to those acting as nurses. A large number of women detest gruel, or " baby-food," as they term it. In this, many, no doubt, are excusable, owing to the condition in which it may previously have been presented to them ; you can make a horse leave his oats by sprinkling pepper over them. But to the point : There are about an equal number who enjoy it, and it is always best to try and avoid whims and deny one's self in every possible manner till after the milk flows freely. A woman cannot sink on plenty of nice oat, corn-meal, or flour-gruel, minute pudding or toast panacea, given often in small quantities. Of course if any article, however well liked, is made by the gallon, so to speak, and warmed over and again, it will become to be loathed ; and too great quantities taken may cause much distress in the stomach. Gruels of all kinds should be well mixed with boiling water in a clean, block tin, covered pail; then set in a clean vessel of water to boil, stirring it till well done. Coarse grain porridges should always be strained; as also should broths. 

For fluids : — Shells, broma, hot milk, pure or watered to suit, are each of themselves nourishing. If the mother's milk is scant, a tea made of Indian posy or life everlasting, and drunk as table tea, with milk and sugar, if desirable, is good to increase it. The diet should become gradually solid, say in the early part of the day a broiled lamb chop, broiled beef, liver, tripe, sirloin steak, or broths without vegetables. Broiled meats retain the nutritive principles better than when otherwise cooked. If tea or coffee is found to lessen the flow of milk, it may be inferred that if continued, all of the fluids of the body will materially change.

Nov 22, 1883

Open Entry:

On the Treatment of Diabetes - A Clinical Lecture by Professor Dojardin-Beaumetz

11/22/83

In a clinical lecture in Paris in 1883, Professor Dojardin-Beaumetz explains how Rollo, Bouchardat, Cantani, and Seegen figured out how to remove starch and carbohydrates from the diet to help diabetics.

ON THE TREATMENT OF DIABETES. A CLINICAL LECTURE DY PROFESSOR DOJARDIN-BEAUMETZ, Member of the Academy of Medicine Physician to the Hôspital St. Antoine, Paris, France 


GENTLEMEN, 


The dietetic treatment of diabetes deserves the first place. Ever since John Rollo at the end of the last century first called attention to the influence of foods in the production of glycosuria, all authorties have felt the obligation to regulate rigorously the diet of diabetic patients. At their head is Bouchardat; after him I will mention especially Seegen, a German writer, and Cantani, an Italian, and what I have now to offer respecting the hygienic regime of this affection will be based on a careful study of the contributions of these three men. The hygienic treatment is founded on the endeavor, far as possible, to exclude from the food all substances capable of forming glucose. This glucose may be derived from sugar in the ingesta, or from starch which has undergone conversion in the alimentary canal. These glycogenous principles, then, should bo suppressed. All this, however, though simple in theory, is difficult in practice.

Jan 1, 1885

Open Entry:

RACHITIS. BY A. JACOBI, M.D. - A System of Practical Medicine By American Authors, Vol. II - General Diseases (Continued) and Diseases of the Digestive System

1/1/85

A full description of the disease known as rickets is discussed, as well as the best nutritive treatments. "Meat-soups, mainly of beef, and of mutton in complications with diarrhoea, ought to be given at once when the diagnosis of rachitis becomes clear or probable."

When it seems so, it is complicated with the main cause of rachitis; that is, bad, insufficient, improper food, with its immediate result—viz. intestinal catarrh. Cow's milk, particularly when acid, starchy food administered too early or in too large quantity or too exclusively, early weaning followed by improper artificial food, insufficient mother's milk or such as is either too thin or too caseinous, lactation protracted beyond the normal limit,—may all alike be causes of intestinal disturbances and rachitis.


The alimentary tract is the seat of many changes recognizable during life. The tonsils are often large. The tongue is seldom coated to an unusual degree. On it are found little islands, red, marginated, deprived of epithelium. They will increase in size and number and extend backward. They will heal and reappear. They are by no means syphilitic, as Parrot would have it, and correspond exactly with the erosions near the solitary glands and those of Lieberkühn in the intestinal part, which mean nothing else but a nutritive disorder of the epithelia, and give rise to nothing worse than incompetency of absorption in that locality and abnormal secretion. The stomach is in a condition of chronic catarrh, sometimes dilated. Acid dyspepsia is frequent. Anorexia and bulimia will alternate. Feces contain an abnormally large amount of lime. Diarrhoea and constipation will follow each other in short intervals. The former owes its origin to faulty ingesta or chronic catarrh; the latter, sometimes to improper food, but more generally to muscular insufficiency. [p. 154]This condition has not been estimated at its proper value. Besides myself,17 nobody but Bohn has paid the attention to it which it deserves. Here, again, I have to insist that rachitis is a disease of the whole system, and not exclusively of the bones. Indeed, the muscular system is amongst the first to suffer. In the same way in which the voluntary muscles are not competent to raise and support the head or to allow a baby to sit up without a functional kyphosis, the involuntary muscles of the intestine are too feeble for normal peristalsis. The infant of a month or two months of age may have had normal and sufficiently numerous evacuations; gradually, however, constipation sets in; the feces become dry, but are perhaps not much changed otherwise. If no other cause be apparent, the suspicion of rachitical constipation is justified. Seldom, however, after it has lasted some time—and only after some time has elapsed relief will be sought—it will remain alone. Other symptoms of rachitis will turn up and the case be easily recognized. This constipation is an early symptom, as early as thoracic grooving or craniotabes. Very often it precedes both—is, in fact, the very first symptom—and ought therefore be known and recognized in time.


The skin participates in the general nutritive disorder. It is soft and flabby. In those infants who become rachitical gradually while proving their malnutrition by the accumulation of large quantities of fat, it exhibits a certain degree of consistency. When rachitis develops in the second half of the first year or later, with the general emaciation the skin appears very thin, flabby, unelastic. The veins are generally large. Complications with eczema and impetigo are very frequent; where they are found the glandular swellings of the neck and below are still more marked than in uncomplicated cases. Circumscribed alopecia is sometimes found (not to speak of the extensive baldness of the occiput). It is not attended with or depending on the microsporon Audouini, but the result of a tropho-neurosis. In the hair Rindfleisch found fat-globules between its inferior and central third. Then it would break, the axial evolution would cease, and the end become bulbous by the new formation of cells.


TREATMENT.—To meet the cause of a disease by preventive measures is the main object and duty of the physician. He thus either obviates a malady or relieves and shortens it. Now, if the original disposition to rachitis, as has been suggested, is to be looked for in early intra-uterine life, when the blood-vessels begin to form and to develop, we know of no treatment directed to the pregnant woman or uterus which promises any favorable result. But the more we recognize an anatomical cause of the chronic disorder, the more we can appreciate the influence upon the child of previous rachitis in the mother, and are justified in emphasizing the necessity on the part of the woman to be healthy when she gets married, and to remain so while she is pregnant. After the child is born the most frequent cause of rachitis is found within the diet or the digestion of the patient. To attend to the former is in almost every instance equal to preventing disorders of the latter; for most of the digestive disturbances during infancy and childhood are the direct consequences of errors in diet. It is, however, impossible to write an essay on infant diet in connection with our subject. I have elaborated the subject in my [p. 159]Infant Diet (2d ed. 1876), in the first volume of Buck's Hygiene, and of C. Gerhardt's Handbuch d. Kinderk. (2d ed. 1882). Still, the importance of the subject requires that some points should be given, be they ever so aphoristic.

The best food for an infant, under ordinary circumstances, is the milk of its mother. The best substitute for the mother is a wet-nurse. Woman's milk ought not to be dispensed with when there is the slightest opportunity to obtain it, particularly when the family history is not good and nutritive disorders are known to exist, or to have existed, in any of its members. When it cannot be had, artificial food must take its place, and it is in the selection of it where most mistakes are constantly made. This much is certain, that without animal's milk no infant can or ought to be brought up; as ass's milk can be had only exceptionally, and dog's milk, which has been said to cure rachitis, is still less available, the milk of either goat or cow must be utilized. The former ought not to be selected if the latter is within reach, mainly for the reason that it contains, besides other objectionable features which it possesses in common with cow's milk, an enormous percentage of fat. Cow's milk differs in this from woman's milk, that it contains more fat, more casein, more potassium, and less sugar than the latter, and that its very casein is not only different in quantity, but also in chemical properties. Even the reaction of the two milks is not the same, woman's milk being always alkaline, cow's milk often either neutral or amphoteric, and liable to acidulate within a short time. Thus, the dilution of cow's milk with water alone yields no equivalent at all of woman's milk, though the dilution be large enough to reduce the amount of casein in the mixture to the requisite percentage of one, and one only, in a hundred. The addition of sugar (loaf-sugar) and of table-salt, and sometimes alkali (bicarbonate of sodium or lime-water, according to special circumstances), is the least that can be insisted upon. Besides, the cow's milk must be boiled to prevent its turning sour too rapidly, and this process may be repeated to advantage several times in the course of the day. Instead of water, some glutinous substance must be used for the purpose of diluting cow's milk. As its casein coagulates in hard, bulky curds, while woman's milk coagulates in small and soft flakes, some substance ought to be selected which keeps its casein in suspension and prevents it from curdling in firm and large masses. Such substances are gum-arabic, gelatin, and the farinacea. Of the latter, all such must be avoided which contain a large percentage of amylum. The younger the baby, the less is it in a fit condition to digest starch; thus arrowroot, rice, and potatoes ought to be shunned. The very best of all farinacea to be used in diluting cow's milk are barley and oatmeal. A thin decoction of either contains a great deal of both nutritious and glutinous elements, the former to be employed under ordinary circumstances, the latter to take its place where there is, on the part of the baby, an unusual tendency to constipation. The decoction may be made of from one to three teaspoonfuls of either in a pint of water; boil with a little salt, and stir, from twelve to twenty minutes, and strain through a coarse cloth. It ought to be thin and transparent. Then mix with cow's milk in different proportions according to the age of the baby. Four parts of the decoction, quite thin, and one of milk (always with loaf-sugar), for a newly-born, equal parts for an infant of six months, [p. 160]and gradual changes between these two periods, will be found satisfactory. Whenever there is a prevalence of curd in the passage the percentage in the food of cow's milk must be reduced, and now and then such medicinal correctives resorted to as will improve a disturbed digestion. Care ought to be taken lest for the newly-born or quite young the preparations of barley offered for sale contain too much starch. The whiter they are, the more unfit for the use of the very young, for the centre of the grain contains the white and soft amylum in preference to the nitrogenous substances which are found near the husk. Thus, it is safest to grind, on one's own coffee-grinder, the whole barley, but little deprived of its husk, and thus secure the most nutritious part of the grain, which is thrown out by the manufacturer of the ornamental and tidy packages offered for sale. But very few cases will ever occur in which the mixtures I recommend will not be tolerated. In a few of them, in very young infants, the composition recommended by Meigs19 has proved successful. It consists of three parts of a solution of milk-sugar (drachm xvij¾ in pint j of water), two parts of cream, two of lime-water, and one part of milk. For each feeding he recommends three tablespoonfuls of the sugar solution, two of lime-water, two of cream, and one of milk: mix and warm. The baby may take all of it, or one-half, or three-fourths.


Under the head of roborants we subsume such substances, either dietetic or remedial, which are known or believed to add to the ingredients of the organism in a form not requiring a great deal of change. Rachitical infants require them at an early period. Meat-soups, mainly of beef, and of mutton in complications with diarrhoea, ought to be given at once when the diagnosis of rachitis becomes clear or probable. Any mode of preparation will prove beneficial; the best way, however, is to utilize the method used by Liebig in making what he called beef-tea. A quarter of a pound of beef or more, tender and lean, cut up finely, is mixed with a cup or a tumbler of water and from five to seven drops of dilute muriatic acid. Allow it to stand two hours and macerate, while stirring up now and then. This beef-tea can be much improved upon by boiling it a few minutes. It may be given by itself or mixed with sweetened and salted barley-water or the usual mess of barley-water and milk which the infant has been taking before. Older infants, particularly those suffering from diarrhoea, take a teaspoonful of raw beef, cut very fine, several times a day. It ought not to be forgotten, however, [p. 162]that the danger of developing tænia medio-canellata from eating raw beef is rather great. Peptonized beef preparations are valuable in urgent cases.


Cod-liver oil, one-half to one teaspoonful or more, three times a day, is a trusted roborant in rachitis, and will remain so. Animal oils are so much more homogeneous to the animal mucous membrane than vegetable oil that they have but little of the purgative effect observed when the latter are given. The former are readily absorbed, and thus permit the nitrogenous ingesta to remain in store for the formation of new tissue, but still affect the intestinal canal sufficiently to counteract constipation. As the latter is an early symptom in a peculiarly dangerous form of rachitis, cod-liver oil ought to be given in time (in craniotabes). Diarrhoea is but seldom produced by it; if so, the addition of a grain or two of bismuth or a few doses of phosphate of lime (one to four grains each) daily, may suffice to render the movements more normal. There are but few cases which will not tolerate cod-liver oil at all. The pure cod-liver oil—no mixtures, no emulsions—ought to be given...

Jan 1, 1885

Open Entry:

Diabetes Mellitus by James Tyson A.M. M.D.

1/1/85

The disease of diabetes is described by Dr Tyson, who suggests that it is easy to cure with a dietary regimen - The efficiency of this treatment depends upon the successful elimination from the diet of all articles containing grape-sugar, cane-sugar, beetroot-sugar, and starch, it being universally recognized that in the early stages of the disease these foods are the sole source of the glucose in the urine.

DIABETES MELLITUS.

BY JAMES TYSON, A.M., M.D.

Diabetes mellitus is a term applied to a group of symptoms more or less complex, of which the most conspicuous is an increased flow of saccharine urine—whence the symptomatic title. It is associated with a derangement of the sugar-assimilating office of the liver, as the result of which an abnormally large quantity of glucose is passed into the hepatic vein and thence into the systemic blood, from which it is secreted by the kidneys. The condition is sometimes associated with alterations in the nervous system, at others with changes in the liver or pancreas, while at others, still, it is impossible to discover any structural alterations accompanying it.


Dr. Pavy has recently put forward some chemical theories which explain the action of the hyperæmia in producing glycosuria, but they do not account for the hyperæmia itself. In healthy digestion the carbohydrates (starch and sugar) are converted, not into glucose, but into maltose, C12H22O11, dextrin being intermediate in composition. Maltose is absorbed and assimilated, converted into glycogen. So, too, when glucose is ingested as such, it is converted by the glucose ferment into maltose in the stomach and intestines. For the proper production of maltose and its assimilation a good venous blood, producing a maltose-forming ferment, is necessary. In diabetes, in consequence of the dilatation of the arteries of the chylopoëtic viscera, the blood enters the liver too little deoxygenated, and a glucose-forming ferment is produced. The glucose thus formed is not assimilable, but passes off into the circulation and the urine.


ETIOLOGY.—The problem of the etiology of diabetes mellitus is as unsatisfactorily solved as is that of its pathogenesis. Certainly, a majority of cases of diabetes cannot be accounted for. A certain number may be ascribed to nervous shock, emotion, or mental anxiety; a few to overwork; some to injury and disease of the nervous system; others to abuses in eating and drinking. Among the injuries said to have caused diabetes are blows upon the skull and concussions communicated to the brain, spinal cord, or vaso-motor centres through other parts of the body. Hereditation is held responsible for a certain number of cases. Malarial and continued fevers, gout, rheumatism, cold, and sexual indulgence have all been charged with producing diabetes.

Diabetes mellitus is most common in adult life, although Dickinson reports a case at six years which was fatal, Bence Jones a case aged three and a half, and Roberts another three years old; and in the reports of the Registrar-General of England for the years 1851-60 ten deaths under the age of one and thirty-two under the age of three are included. This statement, in view of the experience of the difficulties of diagnosis in children so young, seems almost incredible. I have never myself met a case in a child under twelve years. At this age I have known two, of which one, a boy, passed from under my notice, while the second, a girl, recovered completely. The disease is most common between the ages of thirty and sixty. The oldest patient I have ever had died of the disease at seventy-two years, having been under my observation for three and a half years.

It is decidedly more frequent in men than in women, carefully prepared statistics of deaths in Philadelphia during the eleven years from 1870 to 1880, inclusive, giving a total of 206 deaths, of which 124, or three-fifths, were males, and 82, or two-fifths, females. This is the experience of all.

My own experience has been singular and interesting. Up to April, 1881, I had never met a case in a woman. Of 18 cases outside of hospital practice which I have noted since that date, 9 were men and 9 women. But I still do not recall an instance of a woman in hospital practice, although I have constantly cases among men.

Not much that is accurate can be said of the geographical distribution of the disease. It seems to be more common in England and Scotland than in this country, at least if the statistics of New York and Philadelphia are considered. In the former city, statistics extending over three and a fourth years show that out of 1379 deaths, 1 was caused by diabetes; in Philadelphia, in eleven years, 1 out of 875; in England and Wales, according to Dickinson from observations extending over ten years, 1 out of 632; and in Scotland, 1 out of 916. According to the same authority, the disease is more prevalent in the agricultural counties of England, and of these the cooler ones, Norfolk, Suffolk, Berkshire, and Huntingdon. According to Senator, it is more common in Normandy in France; rare, statistically, in Holland, Russia, Brazil, and the West Indies, while it is common in India, especially in Ceylon, and relatively very frequent in modern times in Wurtemberg and Thuringia. Seegen says it is more [p. 204]frequent among Jews than among Christians, but I have never seen a case in a Hebrew.


Changes in diet of course modify the secretion of sugar, starches and saccharine foods increasing it, while nitrogenous and oily foods diminish it. So, too, the urine secreted on rising in the morning has almost always less sugar in it than that passed on retiring; and it is not rare to find no sugar in urine passed on rising, when that passed on retiring at night may contain a small amount of sugar—from ¼ to 1 per cent. On the other hand, I have found a small amount of sugar in the morning urine when the evening urine contained none. Anxiety and excitement both increase the proportion of sugar.


DURATION.—Diabetes is a disease of which the duration is measured by months and years, and although cases are reported in which death supervened in from six days to six weeks after the recognition of the disease, it is evident that such periods do not necessarily measure its actual duration. The disease may have existed some time before coming under observation. On the other hand, a case is reported by Lebert which lasted eighteen years; another, under the successive observation of Prout and Bence Jones, sixteen years; and a third, under Bence Jones and Dickinson, fifteen years. The younger the patient the shorter usually is the course run and the earlier the fatal termination. Yet I have known a girl of twelve recover completely. After middle age the disease is usually so easily controlled by suitable dietetic measures, if the patient is willing to submit to them, that its duration is only limited by that of an ordinary life, while carelessness in this respect is apt to be followed by early grave consequences.


Again, it is well known that the later in life diabetes occurs the more amenable it is to treatment, and that if a proper diabetic diet be adhered to by the patient his life need scarcely be shortened. On the other hand, diabetes mellitus is a disease in which the expectant plan is dangerous. If it does not improve it usually gets worse; and many a patient has fallen a victim to his own indifference and indisposition to adhere to a regimen under which he could have lived his natural term of life. This is especially the case when the disease appears after middle life.

If, on the other hand, the condition becomes thoroughly established before twenty-five years of age, it is less amenable to treatment; but even in such cases a promptly vigorous treatment is sometimes followed by recovery. I have already mentioned the case of a child twelve years old in which complete recovery took place.


TREATMENT.—The treatment of the aggregate of symptoms known as diabetes mellitus is conveniently divided into the dietetic, the medicinal, and the hygienic, of which the first is by far the most important. The efficiency of this treatment depends upon the successful elimination from the diet of all articles containing grape-sugar, cane-sugar, beetroot-sugar, and starch, it being universally recognized that in the early stages of the disease these foods are the sole source of the glucose in the urine. The normal assimilative action of the liver, by which the carbohydrates are first stored up as glycogen, and then gradually given out as glucose or maltose to be oxidized, being deranged, such foods not only become useless as aliments, but if continued seem to aggravate the glycosuria, and the excretion of sugar steadily increases. There is, therefore, a double reason for excluding them from the food. This is easiest accomplished by an exclusive milk diet. The exclusive milk treatment of diabetes was suggested by A. Scott Donkin in 1868. That he is correct in his assertion that in the early stages of diabetes lactin or sugar of milk is quite assimilable, and does not in the slightest degree contribute to the production of glycosuria, I cannot doubt; that it is in this respect even superior to casein, as claimed by Donkin, I am not prepared to state from actual knowledge; but that casein itself resists the sugar-forming progress immeasurably greater than any other albuminous substance, so that in all but the most sure and advanced or complicated cases its arrest is complete, I am also satisfied. Certain it is that in a large number of diabetics the use of a pure skim-milk regimen results in a total disappearance of the sugar from the urine. That in a certain proportion of these cases a [p. 219]gradual substitution of the articles of a mixed diet may be resumed without a return of the symptoms is also true. In other more confirmed cases the use of skim-milk results in a decided reduction in the amount of sugar, with an abatement of other symptoms, which continues as long as the diet is rigidly observed. In still other cases, while the skim-milk treatment makes a decided impression upon the quantity of sugar, it still remains present in considerable amount, while the disease progresses gradually to an unfavorable issue. These three classes of cases represent, ordinarily, different stages of the disease, so that it may be said that as a rule cases recognized sufficiently early may be successfully treated with skim-milk, although it may occasionally happen that cases pursue a downward course from the very beginning despite all treatment. Yet I have never seen a case which, when taken in hand when a few grains of sugar only to the ounce were present, failed to yield to this treatment.


While I am confident that the promptest and most effectual method of eliminating sugar from the urine is by a milk diet, it occasionally happens that a patient cannot or will not submit to so strict a regimen. In other instances, again, it is not necessary to resort to it, because a less restricted diet answers every purpose.

A suitable diabetic diet would also be obtained by eliminating from the bill of fare all saccharine and amylaceous and other sugar-producing substances. Such a diet is, strictly speaking, impossible. For, apart from the fact just mentioned that even fats, as well as albuminous substances to a degree, are capable of producing glycogen, the monotony of a pure meat diet soon becomes unbearable, to say nothing of other derangements it may produce. Fortunately, it is not necessary that such an exclusive diet should be maintained, for certain saccharine foods seem capable of resisting the conversion into sugar more than others. Sugar of milk, or lactin, has already been mentioned as one of these, and to it may be added the sugar of some fruits, and probably also inosit or muscle-sugar, mannite or sugar of manna, and inulin, a starchy principle abundant in Iceland moss. It is found also that there are many vegetable substances containing small quantities of sugar and sugar-producing principles which may be used with impunity in at least the milder forms of diabetes. This being the case, a bill of fare for diabetics may be constructed quite liberal enough to satisfy the palate of most reasonable persons by whom it is attainable.

FOOD AND DRINK ADMISSIBLE.—Shell-fish.—Oysters and clams, raw and cooked in any way, without the addition of flour.

Fish of all kinds, fresh or salted, including lobsters, crabs, sardines, and other fish in oil.

Meats of every variety except livers, including beef, mutton, chipped dried beef, tripe, ham, tongue, bacon, and sausages; also poultry and game of all kinds, with which, however, sweetened jellies and sauces should not be used.

Soup.—All made without flour, rice, vermicelli, or other starchy substances, or without the vegetables named below as inadmissible. Animal soups not thickened with flour, beef-tea, and broths.

Vegetables.—Cabbage, cauliflower, brussels-sprouts, broccoli, green [p. 221]string-beans, the green ends of asparagus, spinach, dandelion, mushrooms, lettuce, endive, coldslaw, olives, cucumbers fresh or pickled, radishes, young onions, water-cresses, mustard and cress, turnip-tops, celery-tops, or any other green vegetables.

Fruits.—Cranberries, plums, cherries, gooseberries, red currants, strawberries, apples, without sugar. Or they may be stewed with the addition of bicarbonate of sodium instead of sugar. (See below.)

Bread and cakes made of gluten, bran, or almond flour, or inulin, with or without eggs and butter. Griddle-cakes, pancakes, biscuit, porridges, etc. made of these flours. Where especial stringency is required these should be altogether omitted.

Eggs in any quantity and prepared in all possible ways, without sugar or ordinary flours.

Nuts.—All except chestnuts, including almonds, walnuts, Brazil-nuts, hazel-nuts, filberts, pecan-nuts, butternuts, cocoanuts.

Condiments.—Salt, vinegar, and pepper in moderate quantities.

Jellies.—None except those unsweetened. They may be made of calf's-foot or gelatin and flavored with wine.

Drinks.—Coffee, tea, and cocoa-nibs, with milk or cream, but without sugar; also milk, cream, soda- (carbonated) water, and all mineral waters freely; acid wines, including claret, Rhine, and still Moselle wines, very dry sherry; unsweetened brandy, whiskey, and gin. No malt liquors, except those ales and beers which have been long bottled, and in which the sugar has all been converted into carbonic acid and alcohol.

Vegetables to be especially Avoided.—Potatoes, white and sweet, rice, beets, carrots, turnips, parsnips, peas, and beans; all vegetables containing starch or sugar in any quantity.

The following list, including essentially the same articles, but arranged in the shape of a true bill of fare, by Austin Flint, Jr.,49 will be found very convenient:

BILL OF FARE FOR DIABETES.—Breakfast.—Oysters stewed, without flour; clams stewed, without flour. Beefsteak, beefsteak with fried onions, broiled chicken, mutton or lamb chops; kidneys, broiled, stewed, or devilled; tripe, pigs' feet, game, ham, bacon, devilled turkey or chicken, sausage, corned-beef hash without potato, minced beef, turkey, chicken, or game with poached eggs. All kinds of fish, fish-roe, fish-balls, without potato. Eggs cooked in any way except with flour or sugar, scrambled eggs with chipped smoked beef, picked salt codfish with eggs, omelets plain or with ham, with smoked beef, kidneys, asparagus-points, fine herbs, parsley, truffles, or mushrooms. Radishes, cucumbers, water-cresses, butter, pot-cheese. Tea or coffee, with a little cream and no sugar. (Glycerin may be used instead of sugar if desired.) Light red wine for those who are in the habit of taking wine at breakfast.

Lunch or Tea.—Oysters or clams cooked in any way except with flour; chicken, lobster, or any kind of salad except potato; fish of all kinds; chops, steaks, ham, tongue, eggs, crabs, or any kind of meat; head-cheese. Red wine, dry sherry, or Bass's ale.

[p. 222]Dinner.—Raw oysters, raw clams.

Soups.—Consommé of beef, of veal, of chicken, or of turtle; consommé with asparagus-points; consommé with okra, ox-tail, turtle, terrapin, oyster, or clam, without flour; chowder, without potatoes, mock turtle, mullagatawny, tomato, gumbo filet.

Fish, etc.—All kinds of fish, lobsters, oysters, clams, terrapin, shrimps, crawfish, hard-shell crabs, soft-shell crabs, (No sauces containing flour.)

Relishes.—Pickles, radishes, celery, sardines, anchovies, olives.

Meats.—All kinds of meat cooked in any way except with flour; all kinds of poultry without dressings containing bread or flour; calf's head, kidneys, sweetbreads, lamb-fries, ham, tongue; all kinds of game; veal, fowl, sweetbreads, etc., with curry, but not thickened with flour. (No liver.)

Vegetables.—Truffles, lettuce, romaine, chicory, endive, cucumbers, spinach, sorrel, beet-tops, cauliflower, cabbage, brussels-sprouts, dandelions, tomatoes, radishes, oyster-plant, celery, onions, string-beans, water-cresses, asparagus, artichoke, Jerusalem artichokes, parsley, mushrooms, all kinds of herbs.

Substitutes for Sweets.—Peaches preserved in brandy without sugar; wine-jelly without sugar, gelée au kirsch without sugar, omelette au rhum without sugar; omelette à la vanille without sugar; gelée au rhum without sugar; gelée au café without sugar.

Miscellaneous.—Butter, cheese of all kinds, eggs cooked in all ways except with flour or sugar, sauces without sugar or flour. Almonds, hazel-nuts, walnuts, cocoanuts. Tea or coffee with a little cream and without sugar. (Glycerin may be used instead of sugar if desired.) Moderately palatable ice-creams and wine-jellies may be made, sweetened with pure glycerin; but although these may be quite satisfactory for a time, they soon become distasteful.

Alcoholic Beverages.—Claret, burgundy, dry sherry, Bass's ale or bitter beer. (No sweet wines.)

Prohibited.—Ordinary bread; cake, etc. made with flour or sugar; desserts made with flour or sugar; vegetables, except those mentioned above; sweet fruits.

49 "On the Treatment of Diabetes Mellitus," a paper read before the American Medical Association at its meeting in Washington, May, 1884, and published in the Journal of the association July 12, 1884. I have so far modified the bill of fare as to permit the use of milk, which Flint excludes.

One of the foods the omission of which is most illy borne by the diabetic, however great his previous indifference to it, is wheaten bread, while the substitutes which have been at different times suggested for it very imperfectly supply its place. Perhaps the best known of these is the bread made of gluten flour. It was suggested by Bouchardat in 1841, and is made by washing the ordinary wheat flour to free it from starch.50

50 The Health Food Company, of 74 Fourth Avenue, N.Y., prepare a gluten flour by first removing the five bran-coats, pulverizing the cleaned berry by the cold-blast process, stirring the powder into iced water, and precipitating the gluten, cellulose, and mineral matters, siphoning off the water holding in suspension the starch, and drying out the precipitate. In this manner the salts of the wheat are retained. A purified gluten made by the Health Food Company is deprived of the cellulose walls of the cells in which the gluten granules are held. Directions for making gluten bread and cakes of various kinds are furnished by the company on application.

Gluten flour, however prepared, contains some starch, as indeed it must if bread is to be made out of it; and I confess to having been a good deal disappointed in its use. I have known the sugar absent in a [p. 223]selected diet to return when gluten bread was permitted, and again disappear on its withdrawal. Of course gluten flour contains less starch than the ordinary wheat flour, and there may be cases where the starch in the former can be assimilated when the quantity in the latter cannot be. The gluten may be made into porridge.51

51 Gluten porridge is made by stirring the gluten into boiling water until thick enough, and then keeping up the boiling process for fifteen minutes. A little salt and butter are added at the close to improve the flavor, and it may be eaten with milk or cream.

A method of getting rid of the starch and sugar in bread, suggested by Liebig and tried by Vogel, consists in converting the starch into sugar by the action of diastase and dissolving out the sugar thus produced. This is accomplished by treating thin slices of bread with an infusion of malt. The bread is then washed, dried, and slightly toasted.

Another substitute for wheaten flour is the bran flour whence the starch is removed by washing.52 The bran itself, according to Parkes,53 sometimes contains as much as 15 per cent. of nitrogenous matter, 3.5 per cent. of fats, and 5.7 per cent. of salts. It is therefore not wholly innutritious, although the salts are washed out in removing the starch. It is considered especially useful when there is constipation, the slightly irritant properties of the bran aiding in maintaining a proper peristalsis and action of the bowels. These irritant properties are, however, inversely as the degree of comminution. The bran flour may be made with milk and eggs into a variety of cakes, of which the best known are those made according to Camplin's directions.54

52 A very carefully prepared bran flour, as well as a wheat-gluten flour, is prepared by John W. Sheddon, pharmacist, corner of Broadway and Thirty-fourth street, New York City.
53 Practical Hygiene, 5th ed., Philadelphia, 1878, p. 222.
54 The following are Camplin's directions for making biscuit of bran flour: To one quarter of a pound of flour add three or four fresh eggs, one and a half ounces of butter, and half a pint of milk; mix the eggs with a little of the milk, and warm the butter with the other portion; then stir the whole together well; add a little nutmeg or ginger or other agreeable flavoring, and bake in small forms or patterns. The cake, when baked, should be about the thickness of an ordinary captain's biscuit. The pans must be well buttered. Bake in rather a quick oven for half an hour. These cakes or biscuits may be eaten by the diabetic with meat or cheese for breakfast, dinner, or supper; at tea they require rather a free allowance of butter, or they may be eaten with curd or any soft cheese.

Where extreme restriction of diet is not required the ordinary bran bread of the bakers may be used. The unbolted flour of which this is made of course contains the starchy principles, but in consequence of the retention of the bran the proportion of starch is less. The cold-blast flour of the Health Food Company is said to contain the nutritious, but not the innutritious, parts of the bran.55

55 It is made by pulverizing the carefully cleaned wheat by a compressed, cold air blast, which strikes the wheat and dashes it to atoms.

The almond food suggested by Pavy is another substitute for bread. The almond is composed of 54 per cent. of oil, 24 per cent. of nitrogenized matter known as emulsin, 6 per cent. of sugar, and 3 per cent. of gum, but no starch enters into its composition. Theoretically, therefore, the food should be everything that can be desired if the gum and sugar can be removed. The latter is done by treating the powdered almonds with boiling water slightly acidulated with tartaric acid, or soaking the almonds in a boiling acidulated liquid which may form a part of the process for blanching. The boiling and acid are necessary to precipitate [p. 224]the emulsin, which would otherwise emulsify the oil of the almond. Pavy speaks well of biscuit made of almond flour and eggs, which he says go very well with a little sherry or other wine, although he admits they are found too rich by some for ordinary consumption. One person only under my observation has used the almond food, and found it unpalatable.

Seegen recommends an almond food made as follows: Beat a quarter of a pound of blanched sweet almonds in a stone mortar for about three-quarters of an hour, making the flour as fine as possible; put the flour thus obtained into a linen bag, which is then immersed for an hour and a quarter in boiling water acidulated with a few drops of vinegar. The mass is thoroughly mixed with three ounces of butter and two eggs; the yolks of three eggs and a little salt are added, and the whole is to be stirred briskly for a long time. A fine froth made by beating the white of the three eggs is added. The whole paste is now put into a form smeared with melted butter and baked by a gentle fire.

Biscuits made of inulin, the starchy principle largely contained in Iceland moss, were suggested by Kuelz. Although a starch, it is one of the assimilable ones alluded to, of which small quantities at least may be taken as food without appearing in the urine as sugar. The biscuits are made with the addition of milk, eggs, and salt, and are inexpensive.

To some persons sugar is almost as imperative a necessity as bread, although to many it is not a very great sacrifice to omit it from ordinary cooking, if not from tea and coffee. For the latter it is just as well to dispense with sugar altogether. But where patients feel that they must have some substitute for sugar, glycerin has been suggested for this purpose, at least for sweetening tea and coffee. But Pavy has noted56 that under the use of glycerin the urine increased from three and three and three-fourth pints to between five and six pints, and the sugar from 1100 grains to 3000 grains per diem, in the course of three days. Its withdrawal was followed by a prompt fall in both the urine and sugar, a return to it by a second increase, and subsequent withdrawal by another decline. Along with the increase of urine and sugar came also more thirst and discomfort. An examination of the chemical composition of glycerin would seem to confirm these results of experience. Glycerin is represented by C3H8O3, sugar by C6H12O3, and glycogen by C6H10O5; whence it is evident that a conversion of glycerin into sugar may take place in the liver. These facts seem to show conclusively that glycerin is no suitable substitute for sugar. I therefore do not use it.

56 On Diabetes, London, 1869, p. 259.

From what has been said it may be inferred that sugar of milk, mannite, and lævulose, or fruit-sugar, are admissible where sugar is demanded. They may be tried, but the urine should be carefully examined under their use, and if glycosuria occur or be increased they should be promptly omitted.

Almost every purpose of sugar in the cooking of acid vegetables is served by bicarbonate of sodium or potassium. As much bicarbonate of potassium to the pound as will lie upon a quarter of a dollar will neutralize the acidity of most fruits which require a large amount of sugar to mask this property. In this manner cranberries, plums, cherries, gooseberries, red currants, strawberries, apples, peaches, and indeed [p. 225]all fruits to which sugar is usually added in the cooking, become available to the diabetic.

In the matter of drinks, where the patient is not on a skim-milk diet, which usually affords as much liquid as is required by the economy, little restraint need be placed upon the consumption of water, which is demanded to replace that secreted with the sugar. Instead of water, Apollinaris water, Vichy, or the ordinary carbonated water may be used if preferred, and to many they are much more refreshing by reason of the carbonic acid they hold in suspension. Apollinaris water is particularly so, and one of my patients, who recovered completely under a suitable selected diet with which this mineral water was permitted, insists that it was that which cured her.

Where a simple selected diet is adopted, tea and coffee without sugar are usually permitted. The propriety of the substitutes for sugar already referred to must be determined by circumstances.

Of distilled and fermented liquors, moderate quantities of whiskey and brandy, dry sherry and madeira, the acid German and French wines—in fact, any non-saccharine wines—may be permitted. A medical friend who reports himself about cured of diabetes writes me that he has consumed eighty gallons of Rhine wine since he began to adhere closely to a diabetic diet. On the other hand, the free use of the stronger alcoholic drinks has been charged with causing diabetes, and I have known such use to produce a recurrence of sugar. No malt liquors, except those in which the sugar has been completely converted into carbonic acid and alcohol, should be used. Bass's ale may be allowed where no especial stringency is required.

Jan 1, 1885

Open Entry:

Gout by W.H. Draper MD

1/1/85

There is a popular prejudice in favor of this class of foods, and a corresponding prejudice against the too free indulgence in animal foods. The purely starchy aliments, such as potatoes and the preparations of corn and rice, and even those which contain a considerable portion of gluten, like wheat, oatmeal, and barley, often provoke in gouty subjects a great deal of mischievous and painful indigestion.

GOUT.

BY W. H. DRAPER, M.D.


DIET.—The prevention of the accumulation of azotized matters in the [p. 128]blood involves, first, a consideration of the question of the diet appropriate to the gouty dyscrasia. The almost uniform counsel upon this point of all the authorities from Sydenham to the present time is, that albuminous foods should be sparingly allowed in the diet of the gouty patient, and that vegetable foods, especially the farinaceous, should constitute the principal aliment. This counsel is based upon the theory that uric acid is the offending substance, and, this being the outcome of a nitrogenous diet, the nitrogenous element in diet must be reduced. My own observation has led me to believe that while this may be a legitimate deduction from the uric-acid theory of gout, it is not supported by the results of clinical experience. If there is one signal peculiarity in the digestive derangements of gouty persons, it is their limited power to digest the carbohydrates, the sugars and starches. In whatever form these foods are used, they are more commonly the source of the dyspeptic troubles of sufferers from gout than the albuminous foods. They provoke the acid and flatulent dyspepsia which so generally precedes the explosion of the gouty paroxysm; and it must have attracted the attention of every observer who has studied the dyspeptic disorders of sufferers from inherited gout, who have sought to control their unhappy heritage by abstemious habits, that these disorders are especially provoked by over-indulgence in saccharine and amylaceous foods.

It is not possible to explain satisfactorily why the lithæmic condition should be induced by the carbonaceous aliments, but we believe there can be no question as to the fact. If, as modern physiological investigations tend to show, the liver is the organ in which urea as well as glycogen is formed, it may be that the overtaxing of its functions manifests itself more readily in the conversion of the albuminous than in that of the carbonaceous foods; or it is possible that the carbonaceous foods are destined chiefly for the evolution of mechanical energy, and that when this destiny is not fulfilled through indolence and imperfect oxygen-supply, they escape complete combustion, and so vitiate the blood. But whatever may be the cause of this anomaly, the clinical fact remains that in gouty persons the conversion of the azotized foods is more complete with a minimum of carbohydrates than it is with an excess of them—in other words, that one of the best means of avoiding an accumulation of lithates in the blood is to diminish the carbohydrates rather than the azotized foods.


The diet which a considerable experience has led me to adopt in the treatment of the gouty dyscrasia is very similar to that which glycosuria requires. The exclusion of the carbohydrates is of course not so strict. Abstinence from all the fermented preparations of alcohol is perhaps the most important restriction, on account of the unfermented dextrin and sugar which they contain. This restriction accords with the common experience respecting the part which wine and beer play as predisposing causes of the gouty disease and as occasional exciting causes of gouty lesions.


Next to the fermented liquors, the use of saccharine food in the diet of gouty persons needs to be restricted. This limitation also is one which common experience confirms. Sweet foods cannot be said to be as provocative of the dyspeptic derangements of the lithæmic subjects as wine and beer, but they are certainly often responsible for the formation of [p. 129]the dyscrasia and for perpetuating many most distressing ailments. Their more or less strict prohibition may constitute the essential point of treatment not only in controlling the progress of the constitutional vice, but in subduing some of the most rebellious lesions. It is important to observe that this prohibition sometimes involves abstinence from sweet and subacid fruits, in the raw as well as in the preserved state. Paroxysms of articular gout have been known to follow indulgence in strawberries, apples, watermelons, and grapes, and the cutaneous and mucous irritations which follow even the most moderate use of these fruits in some gouty persons are certainly not uncommon.


Next in order to the saccharine foods as the source of indigestion in gouty persons come the amylaceous aliments. These constitute, necessarily, so large an element in ordinary diet that the limitation of them in the dietary of gouty persons applies, in the majority of cases, only to their excessive use. This excessive use, however, is often observed. There is a popular prejudice in favor of this class of foods, and a corresponding prejudice against the too free indulgence in animal foods. The purely starchy aliments, such as potatoes and the preparations of corn and rice, and even those which contain a considerable portion of gluten, like wheat, oatmeal, and barley, often provoke in gouty subjects a great deal of mischievous and painful indigestion. This feeble capacity for the digestion of farinaceous foods is most frequently observed in the children of gouty parents, and especially in persons inclined to obesity, and in those whose occupations are sedentary and whose lives are passed for the most part in-doors, and they are least common in those whom necessity or pleasure leads to much active muscular exercise in the open air.


The fats are as a rule easily digested by gouty dyspeptics. This is a fortunate circumstance, for the reason that in the anæmia which is frequently one of the consequences of chronic gout the fatty foods are of inestimable value. In cases of persistent and rebellious lithæmia an exclusively milk diet constitutes a precious resource.

The succulent vegetables, such as tomatoes, cucumbers, cauliflower, cabbage, and the different varieties of salads, constitute for the gouty as well as the diabetic subject agreeable and wholesome additions to a diet from which the starchy and saccharine vegetables have to be largely excluded.

Jan 1, 1885

Open Entry:

FUNCTIONAL AND INFLAMMATORY DISEASES OF THE STOMACH. BY SAMUEL G. ARMOR, M.D., LL.D.
Functional Dyspepsia (Atonic Dyspepsia, Indigestion).

1/1/85

The dietary treatment of dyspepsia was described: the diet, for instance, of bodily labor should consist largely of digestible nitrogenous food, and meat, par excellence, should be increased in proportion as muscular exercise is increased.

FUNCTIONAL AND INFLAMMATORY DISEASES OF THE STOMACH.

BY SAMUEL G. ARMOR, M.D., LL.D.

Functional Dyspepsia (Atonic Dyspepsia, Indigestion).

As a rule, the food should be such as will require the least possible exertion on the part of the stomach. Raw vegetables should be forbidden; pastries, fried dishes, and all rich and greasy compounds should be eschewed; and whatever food be taken should be eaten slowly and well masticated. Many patients digest animal better than vegetable food. Tender brown meats, plainly but well cooked, such as beef, mutton, and game, are to be preferred. Lightly-cooked mutton is more digestible than beef, pork, or lamb, and roast beef is more digestible than boiled. Pork and veal and salted and preserved meats are comparatively indigestible. Bread should never be eaten hot or fresh—better be slightly stale—and bread made from the whole meal is better than that made from the mere starchy part of the grain. Milk and eggs and well-boiled rice are of special value.


But to all these general dietetic rules there may be exceptions growing out of the peculiarities of individual cases. These should be carefully studied. The aged, for obvious reasons, require less food than the young; the middle-aged, inclined to obesity and troubled with feeble digestion, should avoid potatoes, sweets, and fatty substances and spirituous liquors; persons suffering from functional derangements of the liver should be put, for a time, on the most restricted regimen; while, on the contrary, the illy fed and badly-nourished require the most nutritious food that can be digested with comfort to the patient.



To these general predisposing causes may be added indigestion occurring in febrile states of the system. The cause here is obvious. In all general febrile conditions the secretions are markedly disturbed; the tongue is dry and furred; the urine is scanty; the excretions lessened; the bowels constipated; and the appetite gone. The nervous system also participates in the general disturbance. In this condition the gastric juice is changed both quantitatively and qualitatively, and digestion, as a consequence, becomes weak and imperfect—a fact that should be taken into account in regulating the diet of febrile patients. From mere theoretical considerations there can be no doubt that fever patients are often overfed. To counteract the relatively increased tissue-metamorphosis known to exist, and the consequent excessive waste, forced nutrition is frequently resorted to. Then the traditional saying of the justly-celebrated Graves, that he fed fevers, has also rendered popular the practice. Within certain bounds alimentation is undoubtedly an important part of the treatment of all the essential forms of fever. But if more food is crowded upon the stomach than can be digested and assimilated, it merely imposes a burden instead of supplying a want. The excess of food beyond the digestive capacity decomposes, giving rise to fetid gases, and often to troublesome intestinal complications. The true mode of restoring strength in such cases is to administer only such quantities of food as the patient is capable of digesting and assimilating. To this end resort has been had to food in a partially predigested state, such as peptonized milk, milk gruel, soups, jellies, and beef-tea; and clinical experience has thus far shown encouraging results from such nutrition in the management of general fevers. In these febrile conditions, and in all cases of general debility, the weak digestion does not necessarily involve positive disease of the stomach, for by regulating the diet according to the digestive capacity healthy digestion may be obtained for an indefinite time.


Exhaustion of the nerves of organic life strongly predisposes to the atonic forms of dyspepsia. We have already seen how markedly the digestive process is influenced by certain mental states, and it is a well-recognized fact that the sympathetic system of nerves is intimately associated with all the vegetative functions of the body. Without a certain amount of nervous energy derived from this portion of the nervous system, there is failure of the two most important conditions of digestion—viz. muscular movements of the stomach and healthy secretion of gastric juice. This form of indigestion is peculiar to [p. 441]the ill-fed and badly-nourished. It follows in the wake of privation and want, and is often seen in the peculiarly careworn and sallow classes who throng our public dispensaries. In this dyspepsia of exhaustion the solvent power of the stomach is so diminished that if food is forced upon the patient it is apt to be followed by flatulence, headache, uneasy or painful sensations in the stomach, and sometimes by nausea and diarrhoea. It is best treated by improving in every possible way the general system of nutrition, and by adapting the food, both in quantity and quality, to the enfeebled condition of the digestive powers. Hygienic measures are also of great importance in the management of this form of dyspepsia, and especially such as restore the lost energy of the nervous system. If it occur in badly-nourished persons who take little outdoor exercise, the food should be adapted to the feeble digestive power. It should consist for a time largely of milk and eggs, oatmeal, peptonized milk gruels, stale bread; to which should be added digestible nitrogenous meat diet in proportion to increased muscular exercise. Systematic outdoor exercise should be insisted upon as a sine quâ non. Much benefit may be derived from the employment of electric currents, and hydrotherapy has also given excellent results. If the indigestion occur in the badly-fed outdoor day-laborer, his food should be more generous and mixed. It should consist largely, however, of digestible nitrogenous food, and meat, par excellence, should be increased in proportion to the exercise taken. Medicinally, such cases should be treated on general principles. Benefit may be derived from the mineral acids added to simple bitters, or in cases of extreme nervous prostration small doses of nux vomica are a valuable addition to dilute hydrochloric acid. The not unfrequent resort to phosphorus in such cases is of more than doubtful utility. Some interesting contributions have been recently made to this subject of gastric neuroses by Buchard, Sée, and Mathieu. Buchard claims that atonic dilatation of the stomach is a very frequent result of an adynamic state of the general system. He compares it to certain forms of cardiac dilatation—both expressions of myasthenia. It may result from profound anæmia or from psychical causes. Mathieu regards mental depression as only second in frequency. Much stress is laid upon poisons generated by fermenting food in the stomach in such cases. It may cause a true toxæmia, just as renal diseases give rise to uræmia. Of course treatment in such cases must be addressed principally to the general constitution.

But of all predisposing causes of dyspepsia, deficient gastric secretion, with resulting fermentation of food, is perhaps the most prevalent. It is true this deficient secretion may be, and often is, a secondary condition; many causes contribute to its production; but still, the practical fact remains that the immediate cause of the indigestion is disproportion between the quantity of gastric juice secreted and the amount of food taken into the stomach. In all such cases we have what is popularly known as torpidity of digestion, and the condition described is that of atony of the stomach. The two main constituents of gastric juice—namely, acid and pepsin—may be deficient in quantity or disturbed in their relative proportions. A certain amount of acid is absolutely essential to the digestive process, while a small amount of pepsin may be sufficient to digest a large amount of albuminoid food. [p. 442]Pure unmixed gastric juice was first analyzed by Bidder and Schmidt. The mean analyses of ten specimens free from saliva, procured from dogs, gave the following results:


Lack of the normal amount of the gastric secretion must be met by restoring the physiological conditions upon which the secretion depends. In the mean time, hydrochloric and lactic acids may be tried for the purpose of strengthening the solvent powers of the gastric secretion.


EXCITING CAUSES.—The immediate causes of dyspepsia are such as act more directly on the stomach. They embrace all causes which produce conditions of gastric catarrh, such as excess in eating and drinking, imperfect mastication and insalivation, the use of indigestible or unwholesome food and of alcohol, the imperfect arrangement of meals, over-drugging, etc.


Of exciting causes, errors of diet are amongst the most constantly operative, and of these errors excess of food is doubtless the most common. The influence of this as an etiological factor in derangement of digestion can scarcely be exaggerated. In very many instances more food is taken into the stomach than is actually required to restore tissue-waste, and the effects of such excess upon the organism are as numerous as they are hurtful. Indeed, few elements of disease are more constantly operative in a great variety of ailments. In the first place, if food be introduced into the stomach beyond tissue-requirements, symptoms of indigestion at once manifest themselves. The natural balance betwixt [p. 443]supply and demand is disturbed; the general nutrition of the body is interfered with; local disturbances of nutrition follow; and mal-products of digestion find their way into the blood. Especially is this the case when the excessive amount of food contains a disproportionate amount of nitrogenous matter. All proteid principles require a considerable amount of chemical alteration before they are fitted for the metabolic changes of the organism; the processes of assimilative conversion are more complex than those undergone by fats and amyloids; and it follows that there is proportional danger of disturbance of these processes from overwork. Moreover, if nitrogenous food is in excess of tissue-requirement, it undergoes certain oxidation changes in the blood without becoming previously woven into tissue, with resulting compounds which become positive poisons in the economy. The kidneys and skin are largely concerned in the elimination of these compounds, and the frequency with which these organs become diseased is largely due, no doubt, to the excessive use of unassimilated nitrogenous food. Then, again, if food be introduced in excess of the digestive capacity, the undigested portion acts directly upon the stomach as a foreign body, and in undergoing decomposition and putrefying changes frets and irritates the mucous membrane. It can scarcely be a matter of doubt that large groups of diseases have for their principal causes excess of alimentation beyond the actual requirements of the system. All such patients suffer from symptoms of catarrhal indigestion, such as gastric uneasiness, headache, vertigo, a general feeling of lassitude, constipation, and high-colored urine with abundant urates, together with varied skin eruptions. Such cases are greatly relieved by reducing the amount of food taken, especially nitrogenous food, and by a systematic and somewhat prolonged course of purgative mineral waters. Europe is especially rich in these springs. The waters of Carlsbad, Ems, Seltzer, Friedrichshall, and Marienbad, and many of the alkaline purgative waters of our own country, not unfrequently prove valuable to those who can afford to try them, and their value shows how often deranged primary assimilation is at the foundation of many human ailments. The absurd height to which so-called restorative medicine has attained within the last twenty years or more has contributed largely to the production of inflammatory forms of indigestion, with all the evil consequences growing out of general deranged nutrition.


The use of indigestible and unwholesome food entails somewhat the same consequences. This may consist in the use of food essentially unhealthy or indigestible, or made so by imperfect preparation (cooking, etc.). Certain substances taken as food cannot be dissolved by the gastric or intestinal secretions: the seeds, the skins, and rinds of fruit, the husks of corn and bran, and gristle and elastic tissue, as well as hairs in animal food, are thrown off as they are swallowed, and if taken in excess they mechanically irritate the gastro-intestinal mucous membrane and excite symptoms of acute dyspepsia, and not unfrequently give rise to pain of a griping character accompanied by diarrhoea. Symptoms of acute dyspepsia also frequently follow the ingestion of special kinds of food, such as mushrooms, shellfish, or indeed fish of any kind; and food not adapted to the individual organism is apt to excite dyspeptic symptoms. Appetite and digestion are also very much influenced by the life and [p. 444]habits of the individual. The diet, for instance, of bodily labor should consist largely of digestible nitrogenous food, and meat, par excellence, should be increased in proportion as muscular exercise is increased. For all sorts of muscular laborers a mixed diet is best in which animal food enters as a prominent ingredient. Thus, it has been found, according to the researches of Chambers, that in forced military marches meat extract has greater sustaining properties than any other kind of food. But with those who do not take much outdoor exercise the error is apt to be, as already pointed out, in the direction of over-feeding. It cannot be doubted at the present time that over-eating (gluttony) is one of our popular vices. Hufeland says: "In general we find that men who live sparingly attain to the greatest age." While preventive medicine in the way of improved hygiene—better drainage, better ventilation, etc.—is contributing largely to the longevity of the race, we unfortunately encounter in more recent times an antagonizing influence in the elegant art of cookery. Every conceivable ingenuity is resorted to to tempt men to eat more than their stomachs can properly or easily digest or tissue-changes require. The injurious consequences of such over-feeding may finally correct itself by destroying the capacity of the stomach to digest the food.


Food may also be introduced into the stomach in an undigestible form [p. 445]from defects of cookery. The process of cooking food produces certain well-known chemical changes in alimentary substances which render them more digestible than in the uncooked state. By the use of fire in cooking his food new sources of strength have been opened up to man which have doubtless contributed immeasurably to his physical development, and has led to his classification as the cooking animal. With regard to most articles the practice of cooking his food beforehand is wellnigh universal; and especially is this the case with all farinaceous articles of food. The gluten of wheat is almost indigestible in the uncooked state. By the process of cooking the starchy matter of the grain is not only liberated from its protecting envelopes, but it is converted into a gelatinous condition which readily yields to the diastasic ferments. Roberts, in his lectures on the Digestive Ferments, points out the fact that when men under the stress of circumstances have been compelled to subsist on uncooked grains of the cereals, they soon fell into a state of inanition and disease.

Animal diet is also more easily digested in the cooked than in the raw state. The advantage consists chiefly in the effects of heat on the connective tissue and in the separation of the muscular fibre. In this respect cooking aids the digestive process. The gastric juice cannot get at the albumen-containing fibrillæ until the connective tissue is broken up, removed, or dissolved. Hot water softens and removes this connective tissue. Hence raw meat is less easily digestible. Carnivorous animals, that get their food at long intervals, digest it slowly. By cutting, bruising, and scraping meat we to a certain extent imitate the process of cooking. In many cases, indeed, ill-nourished children and dyspeptics digest raw beef thus comminuted better than cooked, and it is a matter of observation that steamed and underdone roast meats are more digestible than when submitted to greater heat.

Some interesting observations have been made by Roberts on the effects of the digestive ferments on cooked and uncooked albuminoids. He employed in his experiments a solution of egg albumen made by mixing white of egg with nine times its volume of water. "This solution," says Roberts, "when boiled in the water-bath does not coagulate nor sensibly change its appearance, but its behavior with the digestive ferments is completely altered. In the raw state this solution is attacked very slowly by pepsin and acid, and pancreatic extract has no effect on it; but after being cooked in the water-bath the albumen is rapidly and entirely digested by artificial gastric juice, and a moiety of it is rapidly digested by pancreatic extract."

It is a mistake, however, to suppose that cooking is equally necessary for all kinds of albuminoids. The oyster, at least, is quite exceptional, for it contains a digestive ferment—the hepatic diastase—which is wholly destroyed by cooking. Milk may be indifferently used either in the cooked or uncooked state, and fruits, which owe their value chiefly to sugar, are not altered by cooking.

The object in introducing here these remarks on cooking food is to show that it forms an important integral part of the work of digestion, and has a direct bearing on the management of all forms of dyspepsia.

Gary Taubes wrote in his new book The Case For Keto a paragraph that I want to dedicate this database towards:

"I did this obsessive research because I wanted to know what was reliable knowledge about the nature of a healthy diet. Borrowing from the philosopher of science Robert Merton, I wanted to know if what we thought we knew was really so. I applied a historical perspective to this controversy because I believe that understanding that context is essential for evaluating and understanding the competing arguments and beliefs. Doesn’t the concept of “knowing what you’re talking about” literally require, after all, that you know the history of what you believe, of your assumptions, and of the competing belief systems and so the evidence on which they’re based?

This is how the Nobel laureate chemist Hans Krebs phrased this thought in a biography he wrote of his mentor, also a Nobel laureate, Otto Warburg: “True, students sometimes comment that because of the enormous amount of current knowledge they have to absorb, they have no time to read about the history of their field. But a knowledge of the historical development of a subject is often essential for a full understanding of its present-day situation.” (Krebs and Schmid 1981.)

  • Facebook
  • Twitter
  • Instagram
  • Reddit's r/Ketoscience
bottom of page