top of page
< Back

Molecular epidemiology of sporadic breast cancer: The role of polymorphic genes involved in oestrogen biosynthesis and metabolism

Mitrunen, K.; Hirvonen, A.

Date Published:





Extra Links:




The major known risk factors for female breast cancer are associated with prolonged exposure to increased levels of oestrogen. The predominant theory relates to effects of oestrogen on cell growth. Enhanced cell proliferation, induced either by endogenous or exogenous oestrogens, increases the number of cell divisions and thereby the possibility for mutation. However, current evidence also supports a role for oxidative metabolites, in particular catechol oestrogens, in the initiation of breast cancer. As observed in drug and chemical metabolism, there is considerable interindividual variability (polymorphism) in the conjugation pathways of both oestrogen and catechol oestrogens. These person-to-person differences, which are attributed to polymorphisms in the genes encoding for the respective enzymes, might define subpopulations of women with higher lifetime exposure to hormone-dependent growth promotion, or to cellular damage from particular oestrogens and/or oestrogen metabolites. Such variation could explain a portion of the cancer susceptibility associated with reproductive effects and hormone exposure. In this paper the potential role of polymorphic genes encoding for enzymes involved in oestrogen biosynthesis (CYP17, CYP19, and 17β-HSD) and conversion of the oestrogen metabolites and their by-products (COMT, CYP1A1, CYP1B1, GSTM1, GSTM3, GSTP1, GSTT1 and MnSOD) in modulating individual susceptibility to breast cancer are reviewed. Although some of these low-penetrance genes appeared as good candidates for risk factors in the etiology of sporadic breast cancer, better designed and considerably larger studies than the majority of the studies conducted so far are evidently needed before any firm conclusions can be drawn. © 2003 Elsevier Science B.V. All rights reserved.

Automatic Tags

Breast cancer; Molecular epidemiology; Genetic polymorphisms; Oestrogen metabolism

bottom of page