top of page
< Back

Residue Depletion of Florfenicol and Florfenicol Amine in Broiler Chicken Claws and a Comparison of Their Concentrations in Edible Tissues Using LC-MS/MS

Pokrant, Ekaterina; Riquelme, Ricardo; Maddaleno, Aldo; San Martin, Betty; Cornejo, Javiera

Date Published:





Extra Links:



PMID: 30200340


Antimicrobial residues might persist in products and by-products destined for human or animal consumption. Studies exploring the depletion behavior of florfenicol residues in broiler chicken claws are scarce, even though claws can enter the food chain directly or indirectly. Hence, this study intended to assess the concentrations of florfenicol (FF) and florfenicol amine (FFA)-its active metabolite-in chicken claws from birds that were treated with a therapeutic dose of florfenicol. Furthermore, concentrations of these analytes in this matrix were compared with their concentrations in edible tissues at each sampling point. A group of 70 broiler chickens were raised under controlled conditions and used to assess residue depletion. Sampling points were on days 5, 10, 20, 25, 30, 35, and 40 after ceasing treatment, thus extending beyond the withdrawal period established for muscle tissue (30 days). Analytes were extracted using HPLC-grade water and acetone, and dichloromethane was used for the clean-up stage. Liquid chromatography coupled to mass spectroscopy detection (LC-MS/MS) was used to detect and quantify the analytes. The analytical methodology developed in this study was validated in-house and based on the recommendations described in the Commission Decision 2002/657/EC from the European Union. Analyte concentrations were calculated by linear regression analysis of calibration curves that were fortified using an internal standard of chloramphenicol-d5 (CAF-d5). The depletion time of FF and FFA was set at 74 days in claws, based on a 95% confidence level and using the limit of detection (LOD) as the cut-off point. Our findings show that FF and FFA can be found in chicken claws at higher concentrations than in muscle and liver samples at each sampling point.

Automatic Tags

muscle; liver; florfenicol; antimicrobial residues; chicken claws; florfenicol amine; LC-MS/MS

bottom of page