top of page
< Back

Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling

Warren, Eleanor C.; Dooves, Stephanie; Lugarà, Eleonora; Damstra-Oddy, Joseph; Schaf, Judith; Heine, Vivi M.; Walker, Mathew C.; Williams, Robin S. B.

Date Published:

Publication:

DOI:

URL:

PMID:

Extra Links:

September 2, 2020

10.1073/pnas.2008980117

Publisher: National Academy of Sciences Section: Biological Sciences PMID: 32879008

Abstract:

Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.

Automatic Tags

epilepsy; mTOR; tuberous sclerosis complex; decanoic acid; Dictyostelium discoideum

  • Facebook
  • Twitter
  • Instagram
  • Reddit's r/Ketoscience
bottom of page