Recent History
January 1, 1949
The Harvard psychologist William Sheldon observed in the late 1940s that starving a fat man doesn’t actually turn him into a lean man or a muscular, athletic one any more than starving a mastiff turns it into a collie or a greyhound. For the dogs, you get an emaciated mastiff. For the humans, an emaciated fat man.
The thinking is that if we cut back sufficiently on how much we eat, surely we will get that excess fat out of our bodies, regardless of how seemingly trivial the overeating might have been that produced that fat. In the 1960s and ’70s these calorie-restricted diets were often known even in the research literature as semistarvation diets. I’m going to use that terminology because it is entirely appropriate. This assumption that people will lose weight if they are starved sufficiently is certainly true. This is one reason clinical researchers and physicians from Newburgh onward were so convinced that we get fat because we eat too much. Cut back enough on the calories a fat person is allowed to eat, and the result is a less fat person. But as the Harvard psychologist William Sheldon observed in the late 1940s, starving a fat man (an endomorph, in his terminology) doesn’t actually turn him into a lean man (an ectomorph) or a muscular, athletic one (a mesomorph) any more than starving a mastiff turns it into a collie or a greyhound. For the dogs, you get an emaciated mastiff. For the humans, an emaciated fat man. So this thinking, too, has some serious problems that have to be ignored to embrace it. If you put a lean person on a semistarvation diet, you also get a less fat person—actually, an emaciated lean person. Starving or semistarving a growing child will result in an emaciated child whose growth is stunted, but no authority would ever assume, let alone state publicly, that children grow because they eat more than they expend. At least I hope not. Yet that’s always been considered the reasonable interpretation of the starve-a-fat-man observation. The important question, however, is why it is that some of us have to be chronically starved or semistarved—exercise portion control and be hungry for a lifetime—to be lean, or at least leaner, and others don’t. This is another question that is rarely asked.
Gary Taubes. The Case for Keto: Rethinking Weight Control and the Science and Practice of Low-Carb/High-Fat Eating (Kindle Locations 868-869). Knopf. Kindle Edition.
Sheldon attended the University of Chicago, where he received a Ph.D. in psychology in 1926 and an M.D. in 1933. In 1951, after having worked at various universities, Sheldon joined the University of Oregon Medical School, where he became distinguished professor of medicine and director of the constitution clinic, which examined the relationships between physical characteristics and disease; he remained there until his retirement in 1970. Also in 1951 he became director of research at the Biological Humanics Foundation in Cambridge, Massachusetts.
Influenced by the pragmatism of American philosopher and psychologist William James and by his background as a naturalist who had also studied animals, Sheldon became convinced that the psychological makeup of humans had biological foundations. He constructed a classification system that associated physiology and psychology, which he outlined in The Varieties of Human Physique: An Introduction to Constitutional Psychology (1940), The Varieties of Temperament: A Psychology of Constitutional Differences (1942), and Atlas of Men: A Guide for Somatotyping the Adult Male at All Ages (1954). Sheldon classified people according to three body types, or somatotypes: endomorphs, who are rounded and soft, were said to have a tendency toward a “viscerotonic” personality (i.e., relaxed, comfortable, extroverted); mesomorphs, who are square and muscular, were said to have a tendency toward a “somotonic” personality (i.e., active, dynamic, assertive, aggressive); and ectomorphs, who are thin and fine-boned, were said to have a tendency toward a “cerebrotonic” personality (i.e., introverted, thoughtful, inhibited, sensitive). He later used this classification system to explain delinquent behaviour, finding that delinquents were likely to be high in mesomorphy and low in ectomorphy and arguing that mesomorphy’s associated temperaments (active and aggressive but lacking sensitivity and inhibition) tend to cause delinquency and criminal behaviour. Although his research was groundbreaking, it was criticized on the grounds that his samples were not representative and that he mistook correlation for causation.
January 1, 1950
Alfred W. Pennington
Carnivore
The L-C Diet
Holiday magazine ran a series of articles discussing the du Pont project, and for a time the so-called Holiday Diet became a household word. In principle, this was a controlled-carbohydrate diet, but in practice the high-protein, high-fat regimen offered so many calories per day that it was still impossible for most people to believe it would work.
July 28, 1956
Calorie intake in relation to body-weight changes in the obese.
Professor Kekwick and Dr Pawan undertake study where they find that obese patients would lose weight so long as the calories consisted chiefly of protein and fat, and the carbohydrates were kept to a minimum.
https://www.scribd.com/doc/28131415/Kekwick-Pawan-1956-Lancet
MANY different types of diet have been successfully used to reduce weight in those considered obese. The principle on which most of them are constructed is to effect a reduction of calorie intake below the theoretical calorie needs of the body. Experience with these patients has suggested, however, that this conception may be too rigid. Many of them state that a very slight departure from the strict diet which can hardly affect calorie intake, results in them failing to lose weight for a time. Though it is realised that evidence from such patients is notoriously inaccurate owing to their approach to this particular condition, it is too constant a belief among them to be entirely discarded. Furthermore, most of the diets in common use not only restrict the intake of calories but also radically alter the proportions provided by protein, fat, and carbohydrate. In this country a healthy sedentary person may be supposed to consume some 2200 calories daily, made up of about 70 g. of protein, 60 g. of fat, and 350 g. of carbohydrate : protein supplies 12% of the calories, fat 24%, and carbohydrate 64%. On most reducing diets, however, the carbohydrate and fat will be restricted while the protein remains about the same ; and in a diet yielding 1000 calories protein may provide 30%, fat 37%, and carbohydrate 33%. Finally, Lyon and Dunlop (1932) observed that patients on isocaloric reducing diets lost weight more rapidly when the largest proportion of the calories was supplied by fat than when it was supplied by carbohydrate. Anderson (1944) attributed these findings to the different amounts of salt (causing water retention) in the diets used by these workers. More recently, Pennington (1951, 1954) has recommended high-fat diets in the treatment of obesity. It therefore seemed important to establish which factor has the greater effectrestriction of calories, or alteration in the proportions of MANY different types of diet have been successfully used to reduce weight in those considered obese. The principle on which most of them are constructed is to effect a reduction of calorie intake below the theoretical calorie needs of the body. Experience with these patients has suggested, however, that this conception may be too rigid. Many of them state that a very slight departure from the strict diet which can hardly affect calorie intake, results in them failing to lose weight for a time. Though it is realised that evidence from such patients is notoriously inaccurate owing to their approach to this particular condition, it is too constant a belief among them to be entirely discarded. Furthermore, most of the diets in common use not only restrict the intake of calories but also radically alter the proportions provided by protein, fat, and carbohydrate. In this country a healthy sedentary person may be supposed to consume some 2200 calories daily, made up of about 70 g. of protein, 60 g. of fat, and 350 g. of carbohydrate : protein supplies 12% of the calories, fat 24%, and carbohydrate 64%. On most reducing diets, however, the carbohydrate and fat will be restricted while the protein remains about the same ; and in a diet yielding 1000 calories protein may provide 30%, fat 37%, and carbohydrate 33%. Finally, Lyon and Dunlop (1932) observed that patients on isocaloric reducing diets lost weight more rapidly when the largest proportion of the calories was supplied by fat than when it was supplied by carbohydrate. Anderson (1944) attributed these findings to the different amounts of salt (causing water retention) in the diets used by these workers. More recently, Pennington (1951, 1954) has recommended high-fat diets in the treatment of obesity. It therefore seemed important to establish which factor has the greater effectrestriction of calories, or alteration in the proportions of protein, fat, and carbohydrate in the diet.
Discussion
If these observations are correct, there seems to be only one reasonable explanation-namely, that the composition of the diet can alter the expenditure of calories in obese persons, increasing it when fat and protein are given, and decreasing it when carbohydrate is given. This is not surprising as regards protein, whose specific dynamic action has long been recognised. It is, however, surprising as regards fat, whose action in this respect seems to be even greater than that of protein. Direct confirmation of such altered metabolism is hard to obtain. The B.M.R., for example, is measured at a time of day and under .other conditions specifically designed to eliminate the effect of diet or reduce it to a minimum. In some patients the B.M.B. was measured at the beginning and at the end of each dietary period. Table vin shows that neither variation in calories nor variation of the composition of the diet with a constant intake of calories significantly changed the B.M.R. during these short dietary periods.
Summary
1. Loss of weight can be successfully achieved in obese patients by numerous diets, most of which restrict calorie intake. At the same time almost all such diets alter the proportion of protein, carbohydrate, and fat as compared with the normal, restricting carbohydrate and fat in particular. It seemed desirable to investigate which factor was of the greatest importance in weight reduction-calorie restriction or alteration in the composition of the diet.
2. The rate of weight-loss has been shown to be proportional to the deficiency in calorie intake when the proportions of fat, carbohydrate, and protein in the diet are kept constant at each level of calorie restriction.
3. When calorie intake was constant at 1000 per day, however, the rate of weight-loss varied greatly on diets of different composition. It was most rapid with high-fat diets ; it was less rapid with high-protein diets ; and weight could be maintained for short periods on diets of 1000-calorie value given chiefly in the form of carbohydrate.
4. At a level of intake of 2000 calories per day, weight was maintained or increased in four out of five obese patients. In these same subjects significant weight-loss occurred when calorie intake was raised to 2600 per day, provided this intake was given mainly in the form of fat and protein.
5. No defect in absorption of these experimental diets occurred to account for the weight-loss. There was neither loss of body-protein stores nor of carbohydrate stores to a degree which significantly contributed to the reduction in weight.
6. The weight lost on these diets appeared to be partly derived from the total body-water (30-50%) and the remainder from body-fat (50-70%).
7. As the rate of weight-loss varied so markedly with the composition of the diets on a constant calorie intake, it is suggested that obese patients must alter their metabolism in response to the contents of the diet. The rate of insensible loss of water has been shown to rise with high-fat and high-protein diets and to fall with highcarbohydrate diets. This supports the suggestion that an alteration in metabolism takes place.
January 13, 1961
Medicine: The Fat of the Land
Time Magazine profiles Ancel Keys and his anti-saturated fat message to solve heart disease, as well as the idea that obesity is a sin instead of a hormonal problem.
Time magazine memorably captured this thinking again in 1961 when it kicked off the apalling mistake of what became the low-fat diet movement with an influential cover story on the University of Minnesota nutritionist Ancel Keys. Just as Newburgh was central to disseminating the notion that the only meaningful difference between the fat and the lean is in their ability to control their appetite, Keys managed to convince medical authorities worldwide that we get heart disease because we eat too much fat or at least too much saturated fat. Time’s story on Keys and the evils of fat—both dietary and body fat—quoted the textbook Harrison’s Principles of Internal Medicine referring to “the most common form of malnutrition” as “caloric excess or obesity,” as though the two were one and the same. The Time article then observed that obesity in Puritan New England was seen as sinful, implying that perhaps it should still be, and quoted Keys saying, “Maybe if the idea got around again that obesity is immoral, the fat man would start to think.” The ridiculous implication, of course, was that if we did think about it (or if that self-indulgent, menopausal housewife did, rather than nibbling bonbons while she played bridge with her lady friends), we’d stop eating too much or at least stop eating immoderately; we’d control our portion sizes and our cravings and be lean. Our problem would be solved. Whether they know it or not, every doctor, every dietitian and physical trainer and friendly neighbor and sibling, every figure of authority who has ever counseled that we eat less and exercise more to lose weight, that we count our calories and so try to consume fewer than we expend, is wedded to this idea that the lean and the eventually-to-become-obese are physiologically identical; only their behavior sets them apart. This belief system has dominated our thinking on obesity since the 1950s, and we have to leave it behind. There are so many things wrong with this idea, things that were already known to be wrong in 1961 and even 1931, that it’s hard to enumerate all of them. One of the most obvious problems with this thinking is that the logic is circular. Some very good obesity researchers pointed this out repeatedly in the mid-twentieth century, but these physicians-and-nutritionists-turned-moralists didn’t seem to care. If we get fatter, more massive, we are clearly taking in more energy than we expend, and yes, the excess is stored as fat (although technically as fat and some muscle or lean tissue to support it and move it around as necessary). So we must be overeating during this fattening process. But that tells us nothing about the cause. Here’s the circular logic: Why do we get fat? Because we’re overeating. How do we know we’re overeating? Because we’re getting fatter. And why are we getting fatter? Because we’re overeating. Logicians know this kind of round-and-round logic as tautology. It’s saying the same thing in two different ways but offering no explanation for either. If we’re getting fatter, it means our body mass is increasing, our energy stores are increasing, and so we are indeed taking in more energy—calories—than we expend. Okay, we’re overeating. But by the same token, if we’re getting taller we’re taking in more calories than we expend. But nobody would say we get taller because we overeat. If we’re getting richer, we’re making more money than we’re spending. But nobody would say we get rich because we overearn. That’s clearly absurd, even if overearning is what’s happening as we get rich, which it is—by definition. So why is this kind of circular explanation considered acceptable for obesity? It only appears to be an explanation. There is no causal information.
Gary Taubes. The Case for Keto: Rethinking Weight Control and the Science and Practice of Low-Carb/High-Fat Eating (Kindle Locations 664-668). Knopf. Kindle Edition.
June 24, 1961
Wilfred Leith
The Canadian Medical Association - Experiences with the Pennington Diet in Management of Obesity
Leith M.D. uses a ketogenic diet with a restriction of 50 grams of carbs, fashioned after the Pennington Diet, with 48 obese subjects and found that twenty-eight were able to follow the diet and succeed in losing weight. The diet prevented hunger, which was the most important discovery.
Obesity in the human has been widely studied by such authorities as Newburgh and Rony. It is generally accepted that fat in excess will be laid down only if food intake exceeds energy output. The treatment of obesity has generally followed this premise. Diets deficient in calories have been prescribed so that caloric intake does not exceed energy output. Weight loss should automatically follow when the instructions are faithfully followed. Indeed formulae have been devised to predict the loss in weight on a measured low caloric intake of a candidate of known height and weight. These low caloric diets are made up so as to be deficient in fat and carbohydrate and with protein at approximately 1 g. per kg. of body weight. It has been shown that weight loss can be achieved in this manner. The diet is followed and the desired results are obtained. Unfortunately, it is difficult for most patients seen in clinical practice to follow a low caloric diet. The literaturre is replete with instances of diet failure on such a regimen. The difficulty is in part due to inability to control appetite. Anorectic agents such as amphetamine, phenmetrazine hydrochloride and bulk substitutites have been utilized as a means of controlling appetite. These are of some value in the clinical mangement of an obese patient. Methods other than those of controlling appetite have also been applied. These include the administration of thyroid extract, the effect of regular exercise and psychotherapy administered both individually and in groups. However, in spite of all these methods, the long-term management of obesity presents many disappointments. Patients often lose weight only to regain it after a short interval. In many, weight loss is never achieved.
Means other than the aforementioned have long been sought in the control of appetite. Appetite and satiety, i.e. the satisfaction of appetite, are complex problems. The latter, satiety, is dependent upon many variables. One of the chief factors is the production of body heat by the specific dynamic action of ingested food. Protein has much the highest index in this regard, while fat has the lowest." Rise in skin temperature and a resulting feeling of warmth are intimately correlated with the feeling of satiety. In fact, it has been suggested that the obese are slower in showing this rise, hence their desire for more food. Another theory relating to satiety is that of the arteriovenous (A-V) glucose difference and its regulation of glucoreceptors in the brain stem. Mayer feels that the glucoreceptors are the controlling centres of appetite and satiety. It is stated by others that satiety depends only on the body's caloric needs and the subsequent voluntary supply of calories. A most attractive hypothesis, well documented by physiological study, is that which proposes that satiety is experienced because the stomach is full. Nervous impulses are sent out to the brain when the stomach is filling or full and the sensation of satiety results. Satiety may then be related to many factors of the diet. If the bulk of food, its protein and its fat intake are increased, on the basis of some of these theories satiety may then more readily follow. Bulk, increased intake of fat and protein, and thus satiety, are not possible with the usual low caloric diet.
As a diet for achieving satiety while effecting weight loss, the low carbohydrate diet of Pennington shows some promise. This diet allows as much bulk as desired. It is high in both fat and protein. Such a diet meets many of the requirements for achievement of satiety. It provides plenty of protein to be used for heat production by the body. Calories are supplied by the high fat intake and filling of the stomach is achieved by the usual bulky nature of the diet. Pennington claims that his patients have lost weight on this diet with a caloric intake of 3000 calories. Another consideration is that of a fat-mobilizing hormone which has been reported to be present in the urine of patients on this type of diet. Urine extracts from such fasting patients have been shiown to produce weight loss when injected into mice. Unfortunately, verification of this work has not as yet been reported by others. One may anticipate that with such a diet hunger may be avoided, appetite satisfied and a measurable weight loss achieved. The diet is not easy to follow. Its most important requirement is the strict necessity of restricting carbohydrate intake to less than 50 g. per day. One may consume as much fat and protein as desired to produce satiety. Of course diets high in fat and protein, and therefore meats, are somewhat expensive. These may be out of the reach of some economic classes. Other ethnic groups long accustomed to high carbohydrate intakes, such as Italians and Chinese, may find such a diet highly unpalatable. However, most well-motivated patients are prepared to follow such a diet.
METHODS
Forty-eight obese individuals were selected. These were patients attending a private practice, an industrial medical centre, or the outpatient clinic of a hospital. All expressed a desire to lose weight. A copy of the diet was given to each patient. The diet was made up to allow protein and fat ad libitunm. However, the carbohydrate component was carefully restricted to less than 50 g. per day. The object of the diet was to provide as much bulk as desired but at the same time to limit sharply the carbohydrate intake. These basic points were outlined to each patient. There were no other diet restrictions. Copies of the diet were mimeographed along with suggested menus for each meal. The patients were instructed regarding the approximate values of the usual daily foodstuffs. The high protein and high fat content foods were selected as being most useful for this type of diet. The whole regimen was reviewed with the patient after the diet had been followed for some weeks, so as to correct any misunderstanding that might have arisen. The patients at the outset found the concept of an ad libittum diet difficult to understand. However, with time they realized that the guiding principle of the extremely low carbohydrate intake (less than 50 g. daily) had first to be strictly maintained. They could then realize satiety by taking as much fat and protein as required. The patients' weights varied from 140 lb. in a young woman whose height was 58 in. to 274 lb. in an elderly woman 70 in. in height. The patients ranged in age from 16 to 62 years. They all fulfilled the true definition of obesity, being 20% more than the ideal (provided by the Metropolitan Life Insurance tables) weight for their height. Their weights were checked at monthly intervals for three months to one year. A small group, eight patients in all, were followed up for a two-year period. One patient was studied while in hospital and balance studies are available in this case (Fig. 1). The patients served as their own controls, since all had been on a low caloric diet without measurable success. At least half had used anorectic agents, seven patients had taken bulk substitutes, and eight had participated in group psychotherapy for a period of eight months. None of them showed a sustained loss of weight.
RESULTS
Forty-eight patients were seen initially. Of these, eight rapidly loist interest and did not wish to carry on with the diet after the first month. All of these patients complained, nonetheless, of the monotony of the diet, its constipating effect, the absence of taste and its failure to satisfy their desire for sweets. Of the remaining 40 patients, 12 felt that they were following instructions faithfully but did not lose weight. The remaining 28 patients achieved satisfactory weight loss during the period of at least six months in which the diet was followed. This loss varied from 10 to 40 lb., averaging 11/ lb. per week. Nine of the 28 patients who lost weight were able to reduce their weight to ideal chart indices.19 The others, although showing considerable weight losses during the period of study, did not reach this desired level. Results in the single case under balance study are shown in Fig. 1. The balance study was carried out on a woman (E.C.) who initially weighed 83 kg. (182 lb.). She was allowed a free diet, for the first seven days. It will be noted that the caloric intake was approximately 2800 calories and that little change in weight occurred. There was a substantial fall in weight from day 7 to day 15 when a low caloric diet of 1000 calories was taken. The high protein and fat diet of Pennington with only 50 g. of carbohydrate was followed for the final period from day 15 to day 24. The caloric value during this period was in the neighbourhood of 2000. There was a weight loss of at least 1 kg. (2.21 lb.) and, interesting to observe, a negative nitrogen balance and a positive sodium balance. The patients who did achieve weight loss showed a substantial fall as. illustrated by a representative case (Fig. 2). All patients, including those who dropped out of the study, expressed similar opinions regarding the diet. They agreed that it was monotonous and constipating. Many missed sweets and the oral satisfaction derived from sweets. However, none of the patients experienced hunger. since they were free to eat protein and fat at will. Hunger had been a factor to most of them on lowr caloric diets and they were quite familiar with this form of nagging discomfort. The new diet was preferred by them, if only for this reason. The eight patients followed up for two years maintained their weight loss w\hile following the diet. DIscussIoN The treatment of the obese patient has followxed a stereotyped pattern for the past 20 years. Prescribing a simple low caloric diet and sympathetic handling of the patient, the usual metlhod, had not been a rewarding form of clinical treatment. Usually, the patient was disturbed by a continual g,naving sense of hunger.0 Attempts to overcome the feeling of hlunger by the use of anorectic drugs and bulk substitutes have been found of value for limited periods.4 5 The use of food high in protein and fat in order to overcome hunger does not at first glance appear to be a likely treatment for obesity. However, such a diet, high in protein and fat but low in carbohydrate, has been suggested by Pennington, who has reported that weight loss can be achieved by such means.16 17 Pennington also has submitted the following theory in an attempt to show that fat and carbohydrate are metabolized in a different manner by obese as compared to normal subjects. A partial block in carbohydrate metabolism at the pyruvic acid level is postulated. Pyruvic acid becomes converted to fat. Glucose intake is increased in an attempt to overcome the block. Obesity results because of the increased intake and consequent fat deposition. By inhibiting glucose intake in the obese, Pennington feels that energy will be derived not from glucose but from fat (ketogenesis). Weight loss in the obese on such a diet is achieved through fat breakdown. The evidence for this theory is hardly complete. Our results do show that satisfactory weight loss may be accomplished by a full caloric, low carbohydrate diet. The patients ingested protein and fat as desired. Careful attention was paid to keeping carbohydrate intake to a minimum. It has been suggested that the diet was unpalatable and the caloric intake was unconsciouslv restricted for this reason, although the builk may have appeared to be sufficient. Another criticism might be that even if the total bulk and caloric intake were ingested, complete absorption may not have taken place. The answer to these points may be discussed in the light of the vork of Kekwick and Pawan,20 who have shown that obese patients will lose weight with diets of 1000 calories. Surprisingly, the rate of weight loss was increased when the composition of the diet was altered from the usual low caloric one to one predominantly made up of fat or protein. They also showed that more liberal diets, of approximately 2000 calories, sufficient to maintain an even weight in obese patients, would result in weight loss if this same caloric intake was altered to a high fat or high protein content of similar caloric value. Balance studies performed during the period showed that complete absorption occurred during the period of high fat or protein ingestion. They suggested that some aspects of metabolism are different in the obese as compared to the normal and that alteration in composition of food may alter energy output in the obese. Our results are compatible with these findings. The same studies have been extended by Pilkington,21 whose group has shown that obese patients on 1000 calorie diets consisting mainly of fat or protein, for long periods of time, lost weight at a constant rate. They found that after an initial rapid weight loss a steady state was achieved if the diet was continued for a sufficiently long period, usually months. The weight loss paralleled that seen in the usual isocaloric 1000 calorie diet consisting mainly of carbohydrate. One mtust bear in mind that these vere 1000 and not 2000 calorie diets. The detailed study on the single patient described in this report shows that weight loss occurred on a full caloric intake, consisting of high fat and protein and low carbohydrate content. The sodium balance was positive and the nitrogen balance negative during the periods of free diet and low caloric diet. However, while on the Pennington diet the sodium balance was negative and the nitrogen balance was positive. Although one is tempted to attempt it, it is not possible to interpret these findings decisively. Shifts in mineral balances are commonly observed phenomena in the obese when the caloric intake is manipulated. The patients who were successful in losing weight all did so on a liberal diet which prevented hunger and provided for satiety. All the other methods of weight reduction mentioned earlier have been utilized by the author in the past. The diet discussed was found to be the most satisfactory of all these methods in our hands. Weight reduction occurred dramatically with a rapid fall early and then proceeding slowly but surely. Only nine of the 28 were able to reach ideal weight indices.'9 The others did not do so well but did achieve significant weight losses. It is our feeling that the usual low isocaloric diet would be necessary to bring these remaining 18 subjects down to ideal weight indices, but this is not an established fact. As stated, the patients found this method of losing weight superior to others. They did not suffer from hunger, felt satisfied most 'of the time and were free to reach for food at any time. They found this to be of immeasurable comfort and thus they were able to lose weight to a greater degree and for a longer period of time than they had heretofore realized. The results reported indicated that a greater number of patients will follow such a diet for a long period with satisfactory achievement levels.
SUMMARY Twenty-eight of 48 patients succeeded in losing weight on a liberal caloric diet high in protein and fat and low in carbohydrate, as proposed by Pennington. The results are discussed in the light of recent metabolic studies in obesity by Kekwick and Pawa.
Ancient History
Luxor, Luxor Governorate, Egypt
2475
B.C.E.
The Earliest Record of Sudden Death Possibly Due to Atherosclerotic Coronary Occlusion
WALTER L. BRUETSCH
The sudden death of an Egyptian noble man is portrayed in the relief of a tomb from the Sixth Dynasty (2625-2475 B.C.). Since there is indisputable evidence from the dissections of Egyptian mummies that atherosclerosis was prevalent in ancient Egypt, it was conjectured that the sudden death might have been due to atherosclerotic occlusion of the coronary arteries.
It may be presumptuous to assume that an Egyptian relief sculpture from the tomb of a noble of the Sixth Dynasty (2625-2475 B.C.) may suggest sudden death possibly due
to coronary atherosclerosis and occlusion. Much of the daily life of the ancient Egyptians has been disclosed to us through well-preserved tomb reliefs. In the same tomb that contains the scene of the dying noble, there is the more widely known relief "Netting Wildfowl in the Marshes." The latter sculpture reveals some of the devices used four thousand years ago for catching waterbirds alive. It gives a minute account of this occupation, which in ancient Egypt was both a sport and a means of livelihood for the professional hunter.
The relief (fig. 1), entitled "Sudden Death," by the Egyptologist von Bissing2 represents a nobleman collapsing in the presence of his servants. The revelant part of the explanatory text, as given by von Bissing, follows (translation by the author):
The interpretation of the details of the theme is left to the observer. We must attempt to comprehend the intentions of the ancient artist who sculptured this unusual scene. In the upper half (to the right) are two men with the customary brief apron, short hair covering the ears, busying themselves with a third man, who obviously has collapsed. One of them, bending over him, has grasped with both hands the left arm of the fallen man; the other servant, bent in his left knee, tries to uphold him by elevating the head and neck, using the knee as a support. Alas, all is in vain. The movement of the left hand of this figure, beat- ing against the forehead, seems to express the despair; and also in the tightly shut lips one can possibly recognize a distressed expression. The body of the fallen noble is limp. . . . Despite great restraint in the interpretation, the impression which the artist tried to convey is quite obvious. The grief and despair are also expressed by the figures to the left. The first has put his left hand to his forehead. (This gesture represents the Egyptian way of expressing sorrow.) At the same time he grasps with the other arm his companion who covers his face with both hands. The third, more impulsively, unites both hands over his head. ... The lord of the tomb, Sesi, whom we can identify here, has suddenly collapsed, causing consternation among his household.
In the section below (to the left) is shown the wife who, struck by terror, has fainted and sunk totheflor. Two women attendants are seen giving her first aid. To the right, one observes the wife, holding on to two distressed servants, leaving the scene. . . .
von Bissing mentions that the artist of the relief must have been a keen observer of real life. This ancient Egyptian scene is not unlike the tragedy that one encounters in present days, when someone drops dead of a "heart attack." The physician of today has almost no other choice than to certify the cause of such a death as due to coronary occlusion or thrombosis, unless the patient was known tohave been aflictedwith rheumatic heart disease or with any of the other more rare conditions which may result in sudden death.
Atherosclerosis among the Ancient Egyptians
The most frequent disease of the coronary arteries, causing sudden death, is atherosclerosis. What evidence is available that atherosclerosis was prevalent in ancient Egypt?
The first occasion to study his condition in peoples of ancient civilizations presented itself when the mummified body of Menephtah (approx.1280-1211B.C.), the reported "Pharaoh of the Hebrew Exodus" from Egypt was found. King Menephtah had severe atherosclerosis. The mummy was unwrapped by the archaeologist Dr. G. Elliot Smith, who sent a piece of the Pharaoh's aorta to Dr. S. G. Shattock of London (1908). Dr. Shattock was able to prepare satisfactory microscopic sections which revealed advanced aortic atherosclerosis with extensive depositions of calcium phosphate.
This marked the beginning of the important study of arteriosclerosis in Egyptian mummies by Sir Mare Armand Ruffer, of the Cairo Medical School(1910-11). His material included mummies ranging over a period of about 2,000 years (1580 B.C. - 525 A.D.).
The technic of embalming in the days of ancient Egypt consisted of the removal of all the viscera and of most of the muscles, destroying much of the arterial system. Often, however, a part or at times the whole aorta or one of the large peripheral arteries was left behind. The peroneal artery, owing to its deep situation, frequently escaped the em- balmer'sknife. Otherarteries,suchasthe femorals, brachials, and common carotids, had persisted.
In some mummies examined by Ruffer the abdominal aorta was calcified in its entirety, the extreme calcification extending into the iliae arteries. Calcified plaques were also found in some of the larger branches of the aorta. The common carotid arteries frequently revealed patches of atheroma, but the most marked atheroselerotic alterations were in the arteries of the lower extremities. The common iliae arteries were not infrequently studded with calcareous plaques and in some instances the femoral arteries were converted into rigid tubes. In other mummies, however, the same arteries were near normal.
What is known as Mdnekeberg's medial calcification was also observed in some of the mummified bodies. In a histologic section of a peronieal artery, the muscular coat had been changed almost wholly by calcification. In one of Ruffer's photographic plates, a part of a calcified ulnar artery is shown. The muscular fibers had been completely replaced by calcification.
In the aorta, as in present days, the atherosclerotic process had a predilection for the points of origin of the intercostal and other arteries. The characteristics and the localization of the arterial lesions observed in Egyptian mummies leaves litle doubt that atherosclerosis in ancient times was of the same nature and degree as seen in today's postmortem examinations.
As to the prevalence of the disease, Ruffer ventured to say that the Egyptians of ancient times suffered as much as modern man from arterial lesions, identical with those found in our times. Ruffer was well qualified to make this statement having performed many autopsies on modern Egyptians, Moslems, and other people of the Middle East. In going over his material and examining the accompanying photographic plates of arteries, one can have litle doubt that what Ruffer had observed in Egyptian mummies represented arteriosclerosis as it is known today.
Although the embalming left no opportunity to examine the coronary arteries inl mummified bodies, the condition of the aorta is a good index of the decree of atheroselerosis present elsewhere. In individuals with extensive atheroselerosis of the aorta, there is almost always a considerable degree of atherosclerosis in the coronary arteries. If Ruffer's statement is correct that the Egyptians of 3,000 years ago were afflicted with arteriosclerosis as much as we are nowadays, coronary occlusion must have been common among the elderly population of the pre-Christian civilizations.
Furthermore, gangrene of the lower extremities in the aged has been recognized since the earliest records of disease. Gangrene of the extremities for centuries did not undergo critical investigation until Cruveilhier (1791- 1873) showed that it was caused by atherosclerotic arteries, associated at times with a terminal thrombus.
SUMMARY
The record of a sudden death occurring in an Egyptian noble of the Sixth Dynasty (2625-2475 B.C.) is presented. Because of the prevalence of arteriosclerosis in ancient Egyptian mummies there is presumptive evidence that this incident might represent sudden death due to atheroselerotic occlusion of the coronary arteries.
Cairo, Cairo Governorate, Egypt
945
B.C.E.
Cardiology in Ancient Egypt by Eugene V. Boisaubin, MD
Egyptians describe coronary ischemia: "if thou examinest a man for illness in his cardia and he has pains in his arms, and in his breast and in one side of his cardio... it is death threatening him."
The classic pattern of cardiac pain--radiation to the left arm--was so well known that the ancient Egyptians and Copts even identified the left ring finger as the "heart" finger.
Altogether, ancient Egyptians were aware of a variety of abnormal cardiac conditions, particularly of angina pectoris and sudden death, arrhythmia, aneurysm, congestive heart failure, and venous insufficiency. Numerous remedies for afflicitions of the heart are found throughout the Ebers payrus.
There were a range of them using different foods, some even including carbohydrates like dates or honey and dough, but interesting, there is another combination of "fat flesh, incense, garlic, and writing fluid".
Extensive histologic analysis of mummies began, however; well before the development of the scanning electron microscope. In 1912, Shattock' made sections of the calcified aorta of Pharaoh Merneptah; and the work of Sir Marc Armand Rufer, published posthumously in 1921, is our most valuable early source of information about vascular disease in ancient Egyptians. Ruffer was able to study a relatively large number of tissue specimens from mummies, mainly from New Kingdom (1600-1100 BC) burials, but covering a wide period of time. In a mummy of the 28th to 30th Dynasty (404-343 BC), he observed atheromas in the common carotids and calcific atheromas in the left subclavian, common iliac, and more peripheral arteries. Ruffer concluded from the state of the costal cartilage that this mummy was not that of an old person. A mummy of a man of the Greek period (ca. 300 to 30 BC), who died at not over 50 years of age, showed atheromas of the aorta and brachial arteries. Since the discoveries of Rufer, numerous other mummies, whose ages at death ranged from the 4th to the 8th decade, have shown similar vascular changes (Fig.4).
In 1931, Long described a female mummy of the 21st Dynasty (1070-945 BC), found at Deir-el- Bahari-that of the lady Teye, who died at about 50 years of age. The heart showed calcification of one mitral cusp, and thickening and calcification of the coronary arteries. The myocardium is said to have had patchy fibrosis, and the aorta "nodular arteriosclerosis." The renal capsule was thickened, many of the glomeruli were fibrosed, and the medium-sized renal vessels were sclerotic. The condition appears to be that of hypertensive arteriosclerotic disease associated with atheromatous change. In the 1960s, Sandison examined and photographed mummy arteries using modern histologic methods (Fig.5). Arteries in the mummy tissues were described as tape-like, but could be dissected easily, whereupon arteriosclerosis, atheroma with lipid depositions, reduplication of the internal elastic lamina, and medial calcification were readily visible under microscopy.
Still more recently, one of the most extensively studied Egyptian mummies has been PUMIL from the Pennsylvania University Museum(hence its initials), now on loan to the National Museum of Natural History at the Smithsonian. It is believed to be from the later Ptolemaic period, circa 170BC. The heart and portions of an atherosclerotic aorta were found in the abdominal cavity. Histologically, large and small arterioles and arteries from other organs showed areas of intimal fibrous thickening typical of sclerosis. These findings are particularly striking since the estimated age of PUM I at time of death was between 35 and 40 years.







